Electronic Supplementary information for

“A family of solution-processable macrocyclic and open-chain oligothiophenes with atropoisomeric scaffolds: structural and electronic features for potential energy applications”

E. Quartapelle Procopio, a T. Benincori, b* G. Appoloni, b P. R. Mussini, a S. Arnaboldi, a Ç. Carbonera, c R. Cirilli, d A. Cominetti, c L. Longo, c R. Martinazzo, a M. Panigati, a,e R. Pò c

a. Università di Milano, Dip. di Chimica and C.I.Ma.I.NA, via Golgi 19, 20133 Milano (Italy), Fax: (+39) 02-50314139.
b. Dip. di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como (Italy). E-mail: tiziana.benincori@uninsubria.it
c. Renewable Energies & Environmental R&D, Istituto Donegani, Eni S. p. A., via Fauser 4, 28200 Novara (Italy). E-mail: riccardo.po@eni.com
d. Centro nazionale per il controllo e la valutazione dei farmaci, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Roma (Italy).
e. Istituto per lo Studio delle Macromolecole, Consiglio Nazionale delle Ricerche (ISMAC-CNR), Via E. Bassini, 15, 20133 Milano (Italy).
Fig. S1. a): Superimposed 1H NMR spectra of (R,R)-2 and of (R,R)-2 + (S,S)-2 (d$_6$-DMSO, 40 °C); b): 1H NMR spectrum of (+) (S,S,S)-3 (d$_6$-DMSO, 40 °C); c): 1H NMR spectrum of the diastereomeric mixture of 3 (d$_6$-DMSO, 40 °C).

Fig. S2. HRLDI of the reaction mixture of the chemical oxidation of the diastereomeric mixture of 2a with FeCl$_3$.
Fig. S3. HRLDI of compound 4 isolated after six selective precipitation cycles.

Fig. S4. 1H NMR spectra of the diastereomeric mixtures of compound 4 (top) and 2 (bottom). A significant shift of all peaks can be appreciated and, in particular, the signal around 6.8 ppm characteristic of compound 2 cannot be found in the spectrum of 4.
Fig. S5. Molecular structure of oligothiophene stereoisomers. Different views are presented for each oligomer.

Fig. S6. Molecular structure of oligothiophene:fullerene dyads. Different views are presented for each oligomer.
Fig S7. Optical micrographs of oligothiophene:fullerene blends. Materials ratios are the same used in devices. Marker length = 500 μm.
Fig. S8. Photovoltaic parameters of (a) P3HT and oligothiophene:PCBM solar cells, and (b) P3HT and oligothiophene:C₆₀ solar cells.
Fig. S9. UV-visible spectra of 1:1 oligothiophene:PCBM films.

Fig. S10. Synopsis of normalized CV patterns of open dimer 2a recorded as a function of the potential scan rate v on GC electrode in CH$_2$Cl$_2$ + 0.1 M TBAPF$_6$.
Fig. S11. Synopsis of normalized CV patterns of cyclic dimer 2 recorded as a function of the potential scan rate v on GC electrode in CH$_2$Cl$_2$ + 0.1 M TBAPF$_6$.

Fig. S12. Synopsis of normalized CV patterns of cyclic trimer 3 recorded as a function of the potential scan rate v on GC electrode in CH$_2$Cl$_2$ + 0.1 M TBAPF$_6$.