Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information (ESI)

A smart ratiometric red fluorescent chemodosimeter for fluoride based on anthraquinone nosylate

Shweta, ^a Ajit Kumar, ^b Neeraj, ^a Sharad Kumar Asthana, ^a and K. K. Upadhyay*^a

^aDepartment of Chemistry, (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh-221005, India. ^bDepartment of Applied Sciences & Humanities, National Institute of Foundry & Forge Technology, Ranchi 834003, Jharkhand, India. **E-mail:** drkaushalbhu@yahoo.co.in; kku@bhu.ac.in, Tel No.: +91-542-6702488

EXPERIMENTAL

1.1 Apparatus:

The IR Spectra for the **AH** was recorded on JASCO-FTIR Spectrophotometer while ¹H and ¹³C NMR spectra for the same were recorded on a JEOL AL 500 FT NMR Spectrometer. Mass spectrometric analysis was carried out on a MDS Sciex API 2000 LCMS/Brukar Compass data analysis spectrometer. Electronic spectra were recorded at room temperature (298 K) on a UV-1700 pharmaspec spectrophotometer with quartz cuvette (path length=1 cm). Emission spectra were recorded on JY HORIBA Fluorescence spectrophotometer.

1.2 Materials:

All reagents for synthesis were purchased from Sigma-Aldrich and were used without further purification.

1.3 General Methods:

All titration experiments were carried at room temperature. All anions were used as their tetrabutyl-ammonium (TBA) salts. The ¹H NMR spectra were recorded by using tetramethylsilane (TMS) as an internal reference standard. For the ¹H NMR titration spectra of **AH**, 5×10^{-3} M solution and tetrabutyl-ammonium fluoride (TBAF) were prepared in DMSO- d_6 . For UV-visible/fluorescence titration experiments, the solutions of anions were prepared in DMSO. The stock solution of **10 mM** was prepared in DMSO which was used for fluorescence titration experiment in pure acetonitrile at 5µM concentration through dilution.

1.4 X-ray diffraction studies:

Single crystals of the **AH** were grown by slow evaporation of saturated solution in DMSO over a period of few weeks. The single crystal X-ray diffraction measurements were carried out on an Oxford Diffraction Xcalibur system with a Ruby CCD detector as well as on a Bruker SMART APEX CCD diffractometer using graphite-monochromated MoKa radiation (k = 0.71073 Å). All the determinations of unit cell and intensity data were performed with graphite-monochromated Mo-Ka radiation (λ =0.71073 Å^o). The structures were solved by direct methods, using Fourier techniques and refined by full-matrix least-squares on F2 using the SHELXTL-97 program package. Crystal data and details of the structure determination for **AH** are summarized in **Table 1**.CCDC **1480047** (**AH**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the **Cambridge Crystallographic Data Centre** via <u>http://www.ccdc.cam.ac.uk/cgi-bin/catreq.cgi</u>.

(DT1 lab) The corresponding Ortep diagram of the AH is shown in Fig.1 while its supramolecular packing has been given in Fig.2a, b.

Table and Contents

S. No.	Figures	Figure and Captions		
1.	Figure S1	IR spectrum of AHOH	4	
2.	Figure S2	¹ H NMR spectrum of AHOH	5	
3.	Figure S3	¹³ C NMR spectrum of AHOH	6	
4.	Figure S4	IR spectrum of AH	7	
5.	Figure S5	¹ H NMR spectrum of AH	8	
6.	Figure S6	¹³ C NMR spectrum of AH	9	
7.	Figure S7	ESI-Mass spectrum of AH	10	
8.	Figure S8	Visible color changes of AH in acetonitrile on addition of different anions (10 equiv.)	11	
9.	Figure S9	(a) UV-visible spectrum of AH (10 μ M) with different anions in acetonitrile; (b) bar	12	
		graph representation of ratio of absorbance at two different wavelengths with different		
		anions		
10.	Figure S10	Reaction time profile of AH with fluoride at ~ 395 nm and at ~ 470 nm	13	
12.	Figure S11	Visible colour changes of AHOH in acetonitrile (ACN) on addition of different anions	14	
13.	Figure S12	(a) Emission spectrum of AH (5 μ M) with different anions (10 equiv.) in acetonitrile,	15	
		$\lambda_{ex} = 425$ nm; (b) Corresponding bar graph with different anions		
14.	Figure S13	Optical response of AH in acetonitrile with different anions (under UV light)	16	
15.	Figure S14	Competition experiment of AH with different anions	17	
16.	Figure S15	Relative time response study of AH with F^{-} and S^{2-} ion through UV-visible studies	18	
17.	Figure S16	ESI-Mass spectrum of A1	19	
18.	Table S1	Structural refinement details of AH	20	
17.	Table S2	Selected important bond lengths and angles for AH	21	
18.	Table S3	Some selected transitions of AH and A1 obtained from theoretical calculations	22	

Figure S2: ¹H NMR spectrum of AHOH

Figure S3: ¹³C NMR spectrum of AHOH

Figure S4: FT-IR spectrum of AH

Figure S5: ¹H NMR spectrum of AH

Figure S6: ¹³C NMR spectrum of AH

Figure S7: ESI-Mass spectrum of AH

Figure S8: Visible colour changes of **AH** in acetonitrile (ACN) on addition of different anions (10 equiv.)

Figure S9: (a) UV-visible spectrum of **AH** (10 μ M) with different anions in acetonitrile; (b) bar graph representation of ratio of absorbance at two different wavelengths with different anions

Figure S10: Reaction time profile of AH with fluoride at \sim 395 nm and at \sim 470 nm through UV-Vis. study

Figure S12: (a) Emission spectrum of **AH** (5 μ M) with different anions (10 equiv.) in acetonitrile, $\lambda_{ex} = 425$ nm; (b) Corresponding bar graph with different anions;

Figure S13: Optical response of AH in acetonitrile (ACN) with different anions (under UV light)

Figure S16: ESI-Mass spectrum of A1

Table S1: Structural refinement details of AH

CCDC No.	1480047			
Empirical formula	$C_{54}H_{30}N_6O_{14}S_2$			
Formula weight	1050.96			
Wavelength	0 71073 Å			
Crystal system space group	Monoclinic C2/c			
Unit cell dimensions	a = 43.418(11) Å alpha = 90 deg			
	h = 7.5014(18) Å beta = 105.777(8)			
	deg			
	c = 14.333(A) Å gamma = 90 deg			
Volume	C = 14.555(4) A, gamma = 50 deg.			
Absorption coefficient	4492.4(19) A			
	0.203 mm			
Z, Calculated density	4, 1.554 mg/m^3			
Theta range for data collection	3.9 to 56.574 deg.			
Limiting indices	$-57 \le h \le 43, -9 \le k \le 9, -19 \le l \le 18$			
Reflections collected / unique	13475 / 5177 [Rint = 0.0709]			
Completeness to theta $= 28.240$	98.0 %			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	5177/0/343			
Goodness-of-fit on F ²	1.041			
Final R indices [I>2sigma(I)]	$R_1 = 0.0575, wR_2 = 0.1378$			
R indices (all data)	$R_1 = 0.0999$, $wR_2 = 0.1685$			

Atoms	Bond Length (Å)	Atoms	Angle (deg.)
S(1)-O(5)	1.603(2)	O(5)-S(1)-O(3)	109.4(1)
S(1)-O(3)	1.419(2)	O(5)-S(1)-O(4)	103.0(1)
S(1)-O(4)	1.421(2)	O(5)-S(1)-C(4)	101.6(1)
S(1)-C(4)	1.760(2)	O(3)-S(1)-O(4)	120.6(1)
O(6)-C(20)	1.230(3)	O(3)-S(1)-C(4)	109.5(1)
O(5)-C(7)	1.423(3)	O(4)-S(1)-C(4)	110.8(1)
O(7)-C(21)	1.223(3)	S(1)-O(5)-C(7)	119.5(1)
O(2)-N(1)	1.226(3)	C(13)-N(2)-C(14)	104.7(2)
N(2)-C(13)	1.326(3)	H(3)-N(3)-C(15)	126.5(2)
N(2)-C(14)	1.371(3)	H(3)-N(3)-C(13)	126.7(2)
N(3)-H(3)	0.880(2)	C(15)-N(3)-C(13)	106.8(2)
N(3)-C(15)	1.376(4)	O(2)-N(1)-O(1)	124.4(3)
N(3)-C(13)	1.380(3)	O(2)-N(1)-C(1)	118.0(2)
O(1)-N(1)	1.229(3)	O(1)-N(1)-C(1)	117.6(2)
N(1)-C(1)	1.475(4)	N(2)-C(13)-N(3)	112.9(2)

Table S2: Selected important bond lengths and angles for **AH**

	Theoretical				Experimental (Acetonitrile)	
S. No.	Transitions: AH (some selected transitions)		Transitions: A1 (some selected transitions)		AH	AH+ TBAF= A1
1.	135 (H)→136 (L)	435 nm f=0.3716	86 (H-1)→88 (L) 87 (H) →88 (L)	702 nm f=0.0085		
2.	134 (H-1) →136 (L) 134 (H-1) →137 (L+1)	394 nm f=0.1273	$\begin{array}{c} 82 \ (\text{H-5}) \rightarrow 88 \ (\text{L}) \\ 86 \ (\text{H-1}) \rightarrow 88 \ (\text{L}) \\ 86 \ (\text{H-1}) \rightarrow 89 \ (\text{L+1}) \end{array}$	482 nm f=0.6423	-	
3.	130 (H-5) →139 (L+3) 132 (H-3) →136 (L) 132 (H-3) →137 (L+1)	334 nm f=0.0676	82 (H-5) →88 (L) 86 (H-1) →88 (L) 87 (H) →89 (L+1)	457 nm f=0.6710	395 nm	470 nm
4.	128 (H-7) →136 (L) 130 (H-5) →136 (L)	316 nm f=0.0699	82 (H-5) →88 (L) 86 (H-1) →89 (L+1) 87 (H) →89 (L+1)	388 nm f=0.0451		
5.	130 (H-5) →136 (L) 131(H-4) →136 (L) 131 (H-4) →137 (L+1)	312 nm f=0.0200	76 (H-11) →88 (L) 86 (H-1) →89 (L) 87 (H) →89 (L+1)	342 nm f=0.1798		

Table S3: Some selected transitions of AH and A1 obtained from theoretical calculations