Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ru1	P1	2.3409(16)	C20	C21	1.396(11)
Ru1	01	2.008(4)	C21	C22	1.381(10)
Ru1	O2	2.006(5)	C23	C24	1.396(9)
Ru1	O3	2.185(5)	C23	C28	1.387(9)
Ru1	N1	2.003(5)	C24	C25	1.390(11)
Ru1	N2	1.983(5)	C25	C26	1.373(11)
P1	C17	1.819(7)	C26	C27	1.387(10)
P1	C23	1.819(7)	C27	C28	1.374(10)
P1	C29	1.825(6)	C29	C30	1.390(9)
01	C12	1.324(8)	C29	C34	1.400(9)
O2	C1	1.328(8)	C30	C31	1.383(10)
N1	C7	1.297(9)	C31	C32	1.369(11)
N1	C8	1.482(9)	C32	C33	1.399(11)
N2	C9	1.478(8)	C33	C34	1.361(10)
N2	C10	1.296(9)	P2A	F1A	1.575(12)
C1	C2	1.419(10)	P2A	F2A	1.559(12)
C1	C6	1.405(10)	P2A	F3A	1.599(11)
C2	C3	1.417(10)	P2A	F4A	1.599(12)
C2	C7	1.433(11)	P2A	F5A	1.595(11)
C3	C4	1.362(12)	P2A	F6A	1.634(12)
C4	C5	1.406(13)	P2B	F1B	1.582(13)
C5	C6	1.357(11)	P2B	F2B	1.583(14)
C8	C9	1.524(10)	P2B	F3B	1.592(13)
C10	C11	1.432(10)	P2B	F4B	1.595(14)
C11	C12	1.417(10)	P2B	F5B	1.589(13)
C11	C16	1.422(10)	P2B	F6B	1.635(13)
C12	C13	1.420(10)	P2C	F1C	1.578(12)
C13	C14	1.370(10)	P2C	F2C	1.586(13)
C14	C15	1.402(12)	P2C	F3C	1.595(12)

Table S1a. Bond Lengths for ${[RuL^{1}(H_{2}O)(PPh_{3})][PF_{6}]} \cdot CH_{2}Cl_{2}$.

C15	C16	1.365(11)	P2C	F4C	1.585(13)
C17	C18	1.402(9)	P2C	F5C	1.598(12)
C17	C22	1.404(10)	P2C	F6C	1.643(12)
C18	C19	1.396(10)	C41	Cl1	1.755(10)
C19	C20	1.380(11)	C41	Cl2	1.764(10)

Table S1b. Bond Angles for ${[RuL^{1}(H_{2}O)(PPh_{3})][PF_{6}]} \cdot CH_{2}Cl_{2}$.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
01	Ru1	P1	90.62(14)	C28	C23	P1	119.8(5)
01	Ru1	O3	87.65(19)	C28	C23	C24	118.9(6)
O2	Ru1	P1	94.13(13)	C25	C24	C23	119.4(7)
02	Ru1	01	94.79(19)	C26	C25	C24	120.7(7)
02	Ru1	O3	84.04(18)	C25	C26	C27	120.3(7)
O3	Ru1	P1	177.37(14)	C28	C27	C26	119.2(6)
N1	Ru1	P1	91.37(16)	C27	C28	C23	121.5(6)
N1	Ru1	O1	174.3(2)	C30	C29	P1	125.2(5)
N1	Ru1	O2	90.3(2)	C30	C29	C34	118.5(6)
N1	Ru1	O3	90.5(2)	C34	C29	P1	116.3(5)
N2	Ru1	P1	95.07(15)	C31	C30	C29	119.8(6)
N2	Ru1	O1	91.7(2)	C32	C31	C30	120.9(7)
N2	Ru1	O2	168.69(19)	C31	C32	C33	119.9(7)
N2	Ru1	O3	87.0(2)	C34	C33	C32	119.3(7)
N2	Ru1	N1	82.9(2)	C33	C34	C29	121.5(7)
C17	P1	Ru1	114.1(2)	F1A	P2A	F3A	89.1(9)
C17	P1	C29	107.6(3)	F1A	P2A	F4A	89.8(10)
C23	P1	Ru1	116.4(2)	F1A	P2A	F5A	89.2(9)
C23	P1	C17	103.6(3)	F1A	P2A	F6A	178.0(11)
C23	P1	C29	101.9(3)	F2A	P2A	F1A	93.5(10)
C29	P1	Ru1	112.1(2)	F2A	P2A	F3A	90.9(10)
C12	O1	Ru1	123.2(4)	F2A	P2A	F4A	176.3(12)

C1	O2	Ru1	125.1(4)	F2A	P2A	F5A	91.1(10)
C7	N1	Ru1	126.1(5)	F2A	P2A	F6A	88.3(10)
C7	N1	C8	120.8(6)	F3A	P2A	F4A	87.5(9)
C8	N1	Ru1	113.0(4)	F3A	P2A	F6A	91.7(9)
C9	N2	Ru1	113.2(4)	F4A	P2A	F6A	88.4(10)
C10	N2	Ru1	125.6(5)	F5A	P2A	F3A	177.5(12)
C10	N2	C9	120.9(6)	F5A	P2A	F4A	90.5(9)
O2	C1	C2	123.4(6)	F5A	P2A	F6A	89.8(9)
O2	C1	C6	118.7(6)	F1B	P2B	F2B	89.6(11)
C6	C1	C2	117.9(7)	F1B	P2B	F3B	93.4(11)
C1	C2	C7	124.4(6)	F1B	P2B	F4B	93.3(11)
C3	C2	C1	118.5(7)	F1B	P2B	F5B	88.5(10)
C3	C2	C7	117.0(7)	F1B	P2B	F6B	176.2(13)
C4	C3	C2	122.3(8)	F2B	P2B	F3B	88.5(11)
C3	C4	C5	118.3(8)	F2B	P2B	F4B	175.8(14)
C6	C5	C4	121.0(8)	F2B	P2B	F5B	91.5(12)
C5	C6	C1	121.9(8)	F2B	P2B	F6B	88.7(11)
N1	C7	C2	125.4(6)	F3B	P2B	F4B	88.3(12)
N1	C8	C9	108.6(5)	F3B	P2B	F6B	89.9(11)
N2	C9	C8	107.7(5)	F4B	P2B	F6B	88.5(11)
N2	C10	C11	124.5(6)	F5B	P2B	F3B	178.1(13)
C12	C11	C10	125.4(6)	F5B	P2B	F4B	91.6(12)
C12	C11	C16	118.3(6)	F5B	P2B	F6B	88.1(11)
C16	C11	C10	116.2(6)	F1C	P2C	F2C	90.1(10)
01	C12	C11	124.3(6)	F1C	P2C	F3C	90.5(10)
01	C12	C13	117.2(6)	F1C	P2C	F4C	93.2(10)
C11	C12	C13	118.4(6)	F1C	P2C	F5C	92.6(10)
C14	C13	C12	120.9(7)	F1C	P2C	F6C	177.8(12)

C13	C14	C15	121.3(7)	F2C	P2C	F3C	92.9(10)
C16	C15	C14	118.6(7)	F2C	P2C	F5C	88.8(10)
C15	C16	C11	122.4(7)	F2C	P2C	F6C	87.9(10)
C18	C17	P1	120.9(5)	F3C	P2C	F5C	176.5(11)
C18	C17	C22	118.6(6)	F3C	P2C	F6C	90.6(9)
C22	C17	P1	120.1(5)	F4C	P2C	F2C	176.6(11)
C19	C18	C17	120.2(7)	F4C	P2C	F3C	87.2(10)
C20	C19	C18	120.3(7)	F4C	P2C	F5C	90.9(10)
C19	C20	C21	120.1(7)	F4C	P2C	F6C	88.7(10)
C22	C21	C20	119.9(7)	F5C	P2C	F6C	86.4(10)
C21	C22	C17	120.9(7)	Cl1	C41	Cl2	112.9(11)
C24	C23	P1	121.0(5)				

Table S1c. Torsion Angles for {[RuL¹(H₂O)(PPh₃)][PF₆]}·CH₂Cl₂.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
Ru1	P1	C17	C18	-67.0(6)	C10	C11	C12	01	-1.9(10)
Ru1	P1	C17	C22	105.3(5)	C10	C11	C12	C13	-178.4(6)
Ru1	P1	C23	C24	-22.2(6)	C10	C11	C16	C15	178.8(6)
Ru1	P1	C23	C28	163.3(5)	C11	C12	C13	C14	0.0(10)
Ru1	P1	C29	C30	119.9(5)	C12	C11	C16	C15	0.7(10)
Ru1	P1	C29	C34	-59.9(5)	C12	C13	C14	C15	0.2(11)
Ru1	01	C12	C11	20.0(9)	C13	C14	C15	C16	0.0(11)
Ru1	01	C12	C13	-163.5(5)	C14	C15	C16	C11	-0.5(11)
Ru1	02	C1	C2	22.5(9)	C16	C11	C12	01	176.0(6)
Ru1	02	C1	C6	-159.2(5)	C16	C11	C12	C13	-0.5(9)
Ru1	N1	C7	C2	-0.2(9)	C17	P1	C23	C24	103.9(6)
Ru1	N1	C8	C9	-29.8(6)	C17	P1	C23	C28	-70.6(6)
Ru1	N2	C9	C8	-35.3(6)	C17	P1	C29	C30	-6.4(7)
Ru1	N2	C10	C11	-9.3(9)	C17	P1	C29	C34	173.8(5)

P1	C17	C18	C19	171.5(5)	C17	C18	C19	C20	0.1(10)
P1	C17	C22	C21	-171.3(6)	C18	C17	C22	C21	1.2(10)
P1	C23	C24	C25	-173.5(6)	C18	C19	C20	C21	0.5(11)
P1	C23	C28	C27	174.8(5)	C19	C20	C21	C22	-0.2(12)
P1	C29	C30	C31	-179.0(5)	C20	C21	C22	C17	-0.6(11)
P1	C29	C34	C33	179.6(5)	C22	C17	C18	C19	-0.9(10)
01	C12	C13	C14	-176.7(6)	C23	P1	C17	C18	165.5(5)
O2	C1	C2	C3	176.6(6)	C23	P1	C17	C22	-22.2(6)
O2	C1	C2	C7	-1.4(11)	C23	P1	C29	C30	-115.0(6)
O2	C1	C6	C5	-177.3(7)	C23	P1	C29	C34	65.2(5)
N1	C8	C9	N2	41.1(7)	C23	C24	C25	C26	-1.5(12)
N2	C10	C11	C12	-4.3(11)	C24	C23	C28	C27	0.2(10)
N2	C10	C11	C16	177.8(6)	C24	C25	C26	C27	0.9(13)
C1	C2	C3	C4	1.0(11)	C25	C26	C27	C28	0.3(11)
C1	C2	C7	N1	-10.7(11)	C26	C27	C28	C23	-0.9(11)
C2	C1	C6	C5	1.1(11)	C28	C23	C24	C25	1.0(11)
C2	C3	C4	C5	0.5(12)	C29	P1	C17	C18	58.0(6)
C3	C2	C7	N1	171.3(6)	C29	P1	C17	C22	-129.6(5)
C3	C4	C5	C6	-1.3(13)	C29	P1	C23	C24	-144.5(6)
C4	C5	C6	C1	0.4(12)	C29	P1	C23	C28	41.0(6)
C6	C1	C2	C3	-1.8(10)	C29	C30	C31	C32	-0.6(11)
C6	C1	C2	C7	-179.7(6)	C30	C29	C34	C33	-0.2(10)
C7	N1	C8	C9	153.7(6)	C30	C31	C32	C33	-0.2(11)
C7	C2	C3	C4	179.1(7)	C31	C32	C33	C34	0.8(11)
C8	N1	C7	C2	175.8(6)	C32	C33	C34	C29	-0.6(10)
C9	N2	C10	C11	176.5(6)	C34	C29	C30	C31	0.8(10)
C10	N2	C9	C8	139.5(6)					

B3LYP/DGDZVP								
Bond length of ligand and complex (Å)								
Atoms		Exper	rimental	Gaseous state				
	\mathbf{L}^{1}		$[RuL^{1}(H_{2}O)(PPh_{3})]^{+}$	$[RuL^{1}(H_{2}O)(PPh_{3})]^{+}$	[RuL ¹ (H ₂ O)(PPh ₃)]			
C1-C2	1.433	Ru1-N1 _{imine}	2.003(5)	2.059	2.358			
C1-C7	1.456	Ru1-N2 _{imine}	1.983(5)	2.040	2.321			
C7-N1 _{imine}	1.301	Ru1-O2	2.341(16)	2.049	2.148			
N1 _{imine} -C8	1.457	Ru1-O1	2.006(5)	2.046	2.151			
C8-C9	1.546	Ru1-H ₂ O	2.185(5)	2.325	3.370			
C9-N2 _{imine}	1.455	Ru1-P1	2.341(16)	2.384	2.650			
N2 _{imine} -C10	1.291	Bond Angle (°)						
C10-C11	1.475	N1 _{imine} -Ru1-N2 _{imine}	82.9(2)	81.99	72.53			
C11-C12	1.420	N1 _{imine} -Ru1-O1	174.30(2)	171.50	139.47			
O1-C2	1.351	N1 _{imine} -Ru1-O2	90.30(2)	88.29	79.37			
O2-C12	1.380	N1 _{imine} -Ru1-H ₂ O	90.50(2)	88.86	136.42			
01-Н	1.029	N1 _{imine} -Ru1-P1	91.37(16)	94.90	107.91			
О2-Н	0.978	N2 _{imine} -Ru1-O2	168.69(19)	163.79	149.66			
		N2 _{imine} -Ru1-O1	91.7(2)	90.12	79.90			
		N2 _{imine} -Ru1-H ₂ O	87.0(2)	87.84	140.16			
		N2 _{imine} -Ru1-P1	95.07(15)	98.68	97.34			
		O2-Ru1-O1	87.65(19)	98.65	116.78			
		O2-Ru1- H ₂ O	87.65(19)	78.99	60.25			
		O1-Ru1-H ₂ O	87.65(19)	87.68	60.50			
		O2-Ru1-P1	87.65(19)	95.03	102.02			
		O1-Ru1-P1	90.62(14)	89.40	104.53			
		H ₂ O-Ru1-P1	177.37(14)	172.86	96.57			
		Methanol						
C1-C2	1.433	Ru1-N1 _{imine}	2.003(5)	2.055	2.043			
C1-C7	1.458	Ru1-N2 _{imine}	1.983(5)	2.038	2.037			
C7-N1 _{imine}	1.301	Ru1-O2	2.341(16)	2.05	2.147			
N1 _{imine} -C8	1.459	Ru1-O1	2.006(5)	2.055	2.143			

 $\textbf{Table S1d.} The optimized geometrical data of [RuL^1(H_2O)(PPh_3)] and [RuL^1(H_2O)(PPh_3)]^+ at gaseous state$

C8-C9	1.543	Ru1-H ₂ O	2.185(5)	2.303	2.321
C9-N2 _{imine}	1.459	Ru1-P1	2.341(16)	2.389	2.330
N2 _{imine} -C10	1.293	Bond Angle (°)			
C10-C11	1.475	N1 _{imine} -Ru1-N2 _{imine}	82.9(2)	82.08	83.27
C11-C12	1.422	N1 _{imine} -Ru1-O1	174.3(2)	171.69	166.76
O1-C2	1.356	N1 _{imine} -Ru1-O2	90.3(2)	88.65	89.81
O2-C12	1.378	N1 _{imine} -Ru1-H ₂ O	90.5(2)	87.57	87.92
01-Н	1.040	N1 _{imine} -Ru1-P1	91.37(16)	94.88	97.54
О2-Н	0.980	N2 _{imine} -Ru1-O2	168.69(19)	164.75	168.17
H-O1-N1 _{imine}	1.611	N2 _{imine} -Ru1-O1	91.7(2)	90.17	90.401
		N2 _{imine} -Ru1-H ₂ O	87.0(2)	86.92	91.96
		N2 _{imine} -Ru1-P1	95.07(15)	98.41	96.62
		O2-Ru1-O1	87.65(19)	98.28	94.34
		O2-Ru1-H ₂ O	87.65(19)	80.59	78.16
		O1-Ru1-H ₂ O	87.65(19)	89.03	80.66
		O2-Ru1-P1	87.65(19)	94.40	93.79
		O1-Ru1-P1	90.62(14)	89.19	94.73
		H ₂ O-Ru1-P1	177.37(14)	174.38	170.30

Metal	M-N	Ref.
Mn ³⁺ (d ⁴)	2.292	[1, 2]
Fe ³⁺ (d ⁵)	2.111	[3]
Ru ³⁺ (d ⁵)	2.011	[4-6]
Ru ³⁺ (d ⁵)	2.003	this work
Co ³⁺ (d ⁶)	1.953	[7, 8]

 $\label{eq:stable} \textbf{Table S2a.} \ M-N_{\text{imine}} \ \text{bond distance for different trivalent transition metal ions with salen ligands}.$

 Table S2b. Bond length (M-Nimine) of different divalent metal ions.

 Metal ions
 M-N
 Ref

wetar ions	IVI-IN	Rei	
Mn ²⁺ (d ⁵)	2.239	[9], [10]	
Fe ²⁺ (d ⁶)	2.226	[11]	
Ru ²⁺ (d ⁶)	2.071	[12], [13]	
Co ²⁺ (d ⁷)	2.119	[14], [10]	
Ni ²⁺ (d ⁸)	2.055	[15], [10]	
Cu ²⁺ (d ⁹)	1.956	[16], [15]	
Zn ²⁺ (d ¹⁰)	1.985	[17], [10]	

Note: All references are in last page.

B3LYP/DGDZVP									
Bond length of	Bond length of ligand and complex (Å)								
Atoms		Exper	rimental	Gaseous state					
	(L ¹)		$[RuL^{1}(H_{2}O)(PPh_{3})]^{+}$	[RuL ¹ (H ₂ O)(AcO)]	[RuL ¹ (AcO)(PPh ₃)]				
C1-C2	1.433	Ru1-N1 _{imine}	2.003(5)	2.002	2.034				
C1-C7	1.456	Ru1-N2 _{imine}	1.983(5)	1.990	2.023				
C7-N1 _{imine}	1.301	Ru1-O2	2.341(16)	2.035	2.079				
N1 _{imine} -C8	1.457	Ru1-O1	2.006(5)	2.025	2.067				
C8-C9	1.546	Ru1-H ₂ O	2.185(5)	2.271	-				
C9-N2 _{imine}	1.455	Ru1-P1	2.341(16)	-	2.474				
N2 _{imine} -C10	1.291	Ru-AcO	-	1.985	2.092				
C11-C12	1.420	Bond Angle (°)							
O1-C2	1.351	N1 _{imine} -Ru1-N2 _{imine}	82.9(2)	84.05	83.03				
O2-C12	1.380	N1 _{imine} -Ru1-O1	174.30(2)	170.36	173.18				
01-Н	1.029	N1 _{imine} -Ru1-O2	90.30(2)	91.44	90.95				
О2-Н	0.978	N1 _{imine} -Ru1-H ₂ O	90.50(2)	89.10	-				
H-O1-N1 _{imine}	1.652	N1 _{imine} -Ru1-P1	91.37(16)	-	93.73				
		N1 _{imine} -Ru1-AcO	-	97.9	92.76				
		N2 _{imine} -Ru1-O2	168.69(19)	175.26	172.29				
		N2 _{imine} -Ru1-O1	91.7(2)	90.41	90.16				
		N2 _{imine} -Ru1-H ₂ O	87.0(2)	91.18	-				
		N2 _{imine} -Ru1-P1	95.07(15)	-	97.69				
		N2 _{imine} -Ru1-AcO	-	93.19	90.77				
		O2-Ru1-O1	87.65(19)	93.85	95.80				
		O2-Ru1-H ₂ O	87.65(19)	87.28	-				
		O1-Ru1-H ₂ O	87.65(19)	83.11	-				
		O2-Ru1-P1	87.65(19)	-	87.47				
		O1 _{imine} -Ru1-AcO	-	90.23	86.93				
		O1-Ru1-P1	90.62(14)	-	87.54				
		H ₂ O-Ru1-P1	177.37(14)	-	-				

Table S3. The optimized geometrical data of $[RuL^{1}(H_{2}O)(AcO)]$ and $[RuL^{1}(AcO)(PPh_{3})]$ at gaseous state and methanol

		O2 _{imine} -Ru1-AcO	-	88.87	84.69
		Methanol			
C1-C2	1.433	Ru1-N1 _{imine}	2.003(5)	2.332	2.036
C1-C7	1.458	Ru1-N2 _{imine}	1.983(5)	2.305	2.024
C7-N1 _{imine}	1.301	Ru1-O2	2.341(16)	2.136	2.081
N1 _{imine} -C8	1.459	Ru1-O1	2.006(5)	2.169	2.070
C8-C9	1.543	Ru1-H ₂ O	2.185(5)	2.575	-
C9-N2 _{imine}	1.459	Ru1-P1	2.341(16)	-	2.465
N2 _{imine} -C10	1.293	Ru-AcO	-	2.198	2.138
C10-C11	1.475				
C11-C12	1.422	Bond Angle (°)	-		
	1.356	N1 _{imine} -Ru1-	82.9(2)	73.02	82.90
01-C2		N2 _{imine}			
O2-C12	1.378	N1 _{imine} -Ru1-O1	174.3(2)	134.78	173.07
01-Н	1.040	N1 _{imine} -Ru1-O2	90.3(2)	80.22	90.54
02-Н	0.980	N1 _{imine} -Ru1-H ₂ O	90.5(2)	92.04	-
H-O1-N1 _{imine}	1.611	N1 _{imine} -Ru1-P1	91.37(16)		93.40
		N1 _{imine} -Ru1-AcO	-	126.43	93.60
		N2 _{imine} -Ru1-O2	168.69(19)	151.18	171.26
		N2 _{imine} -Ru1-O1	91.7(2)	79.38	90.20
		N2 _{imine} -Ru1-H ₂ O	87.0(2)	114.93	-
		N2 _{imine} -Ru1-P1	95.07(15)	-	97.07
		N2 _{imine} -Ru1-AcO	-	91.06	91.06
		O2-Ru1-O1	87.65(19)	128.46	96.25
		O2-Ru1-H ₂ O	87.65(19)	75.94	-
		O1-Ru1-H ₂ O	87.65(19)	68.04	-
		O2-Ru1-P1	87.65(19)	-	89.05
		O1-Ru1-P1	90.62(14)	-	88.08
		O1 _{imine} -Ru1-AcO	-	88.49	85.83
		H ₂ O-Ru1-P1	177.37(14)	-	-
		H ₂ O-Ru1-AcO	-	139.42	-
		O2 _{imine} -Ru1-AcO	-	96.41	83.57

Table S4. TDDFT spectral data of electronic transitions [RuL¹(H₂O)(PPh₃)], [RuL¹(H₂O)(PPh₃)]⁺, [RuL¹(H₂O)(AcO)] and $[RuL^{1}(AcO)(PPh_{3})]$ at gaseous state and methanol, $L^{1}=N$, N'-Bis (salicylidene)ethylenediamine with oscillator strength f > 0.0001.

> _____ _____

Wevelength (nm)	Osc. Strength (f)	Contribution percentage	Character	Theory (nm)	Experimental (nm)
· · ·		Gaseous state			
		$[RuL^{1}(H_{2}O)(PPh_{3})]$			
1289.62	0.0003	HOMO->LUMO+1 (46%) HOMO->LUMO+2 (35%) HOMO-2->LUMO+1 (4%) HOMO-2->LUMO+2 (3%) HOMO->LUMO+4 (3%) HOMO-1->LUMO+2 (2%)	MLCT		
876.03	0.0009	HOMO->LUMO+2 (44%) HOMO->LUMO+1 (38%) HOMO-2->LUMO+1 (3%) HOMO-2->LUMO+2 (3%) HOMO-1->LUMO+2 (3%) HOMO-1->LUMO+1 (2%)	MLCT	902	
559.70	0.0003	HOMO->LUMO+8 (49%) HOMO->LUMO (14%) HOMO->LUMO+4 (7%) HOMO->LUMO+10 (4%) HOMO-2->LUMO+8 (4%) HOMO-1->LUMO+8 (3%) HOMO->LUMO+7 (3%) HOMO->LUMO+9 (3%)	MLCT		
541.87	0.0634	HOMO-1->LUMO (53%) HOMO-2->LUMO (29%) HOMO->LUMO (10%) HOMO->LUMO+8 (2%)	MLCT	545	

536.77	0.0134	HOMO-2->LUMO (52%) HOMO-1->LUMO (30%) HOMO->LUMO (7%) HOMO->LUMO+1 (2%) HOMO->LUMO+3 (2%)	MLCT
526.32	0.0039	HOMO->LUMO (70%) HOMO->LUMO+8 (8%) HOMO-1->LUMO (4%) HOMO-2->LUMO (3%) HOMO->LUMO+4 (2%)	MLCT
501.62	0.0053	HOMO->LUMO+1 (84%) HOMO-2->LUMO (3%) HOMO-1->LUMO (3%) HOMO-1->LUMO (2%)	MLCT
477.71	0.001	HOMO-1->LUMO (47%) HOMO-2->LUMO+3 (13%) HOMO-2->LUMO (11%) HOMO-2->LUMO+1 (5%) HOMO->LUMO+1 (4%) HOMO-2->LUMO+1 (4%) HOMO-3->LUMO+3 (3%) HOMO-3->LUMO (2%)	MLCT
471.66	0.0002	HOMO-1->LUMO+1 (38%) HOMO-1->LUMO+1 (20%) HOMO-2->LUMO+1 (12%) HOMO-1->LUMO+4 (9%) HOMO-2->LUMO (6%) HOMO-2->LUMO+1 (3%) HOMO-1->LUMO+2 (2%)	MLCT
 1149.49	0.0003	[RuL ¹ (H ₂ O)(PPh ₃)] ⁺ HOMO-1->LUMO (93%) HOMO->LUMO (2%)	MLCT

1018.27	0.0866	HOMO->LUMO+1 (78%) HOMO->LUMO+2 (14%) HOMO-2->LUMO+1 (2%) HOMO->LUMO (2%)	MLCT		
960.97	0.0254	HOMO->LUMO+2 (79%) HOMO->LUMO+1 (14%) HOMO-1->LUMO+1 (3%)	MLCT		915
836.71	0.0013	HOMO-1->LUMO+2 (81%) HOMO-1->LUMO+1 (12%)	MLCT	808	
780.51	0.0345	HOMO-1->LUMO+1 (62%) HOMO-2->LUMO (13%) HOMO-1->LUMO+2 (13%) HOMO-6->LUMO (2%)	MLCT		740
709.74	0.0079	HOMO-2->LUMO (70%) HOMO-1->LUMO+1 (9%) HOMO-2->LUMO+2 (8%) HOMO->LUMO+2 (3%) HOMO-12->LUMO (2%)	MLCT		
639.32	0.0052	HOMO-2->LUMO+1 (91%) HOMO-12->LUMO+1 (3%) HOMO->LUMO+1 (2%)	MLCT	630	
567.04	0.0332	HOMO-2->LUMO+2 (48%) HOMO-3->LUMO (20%) HOMO-4->LUMO (7%) HOMO-2->LUMO (6%) HOMO-6->LUMO (4%) HOMO-5->LUMO (4%) HOMO-12->LUMO+2 (2%)	MLCT		497
555.73	0.0339	HOMO-3->LUMO (29%) HOMO-2->LUMO+2 (25%) HOMO-5->LUMO (16%)	MLCT	495	343

		HOMO-4->LUMO (14%) HOMO-10->LUMO+1 (3%) HOMO-6->LUMO (2%)			
		[RuL ¹ (H ₂ O)(AcO)]			
1923.43	0.0004	HOMO-1->LUMO (66%) HOMO-3->LUMO (19%) HOMO->LUMO (8%) HOMO-4->LUMO (5%)	MLCT		
1493.97	0.0003	HOMO-3->LUMO (66%) HOMO-1->LUMO (17%) HOMO-2->LUMO (13%) HOMO-6->LUMO (4%)	MLCT		
861.90	0.1422	HOMO->LUMO (65%) HOMO-4->LUMO (23%) HOMO-1->LUMO (14%)	MLCT		
724.71	0.153	HOMO-4->LUMO (57%) HOMO->LUMO (28%) HOMO-2->LUMO (9%) HOMO-6->LUMO (3%) HOMO-3->LUMO (2%)	MLCT	758	
681.79	0.0268	HOMO-2->LUMO (70%) HOMO-3->LUMO (12%) HOMO-4->LUMO (10%) HOMO-5->LUMO (3%)	MLCT		
554.99	0.0077	HOMO-5->LUMO (92%)	MLCT	534	
523.03	0.024	HOMO-6->LUMO (2%) HOMO-6->LUMO (87%) HOMO-1->LUMO (3%) HOMO-4->LUMO (3%) HOMO-5->LUMO (2%)	MLCT		
432.51	0.0015	HOMO-9->LUMO (16%)	MLCT		

		HOMO-8->LUMO (63%) HOMO-10->LUMO (7%) HOMO-7->LUMO (9%)			
423.08	0.0022	HOMO-1->LUMO+3 (54%) HOMO-7->LUMO (10%) HOMO-6->LUMO+3 (7%) HOMO-4->LUMO+3 (7%) HOMO->LUMO+3 (7%) HOMO-1->LUMO+2 (3%) HOMO-9->LUMO (2%) HOMO-8->LUMO (2%)	MLCT	427	
414.16	0.0008	HOMO-9->LUMO (71%) HOMO-8->LUMO (25%)	MLCT		
		[RuL ¹ (AcO)(PPh ₃)]			
2665.75	0.0006	HOMO-1->LUMO (43%) HOMO->LUMO (41%) HOMO-3->LUMO (5%) HOMO-2->LUMO (5%) HOMO-4->LUMO (2%)	MLCT		
1517.55	0.0001	HOMO-2->LUMO (81%) HOMO-4->LUMO (8%) HOMO->LUMO (3%)	MLCT		
805.46	0.0825	HOMO->LUMO (52%) HOMO-1->LUMO (43%)	MLCT	802	
678.29	0.0094	HOMO-3->LUMO (81%) HOMO-1->LUMO (8%) HOMO-4->LUMO (4%)	MLCT		
589.14	0.0068	HOMO-4->LUMO (80%) HOMO-2->LUMO (8%) HOMO-3->LUMO (6%)	MLCT	606	

15

HOMO-1->LUMO (2%)

- 493.528 0.003 HOMO->LUMO+1 (28%) MLCT HOMO->LUMO+2 (18%) HOMO-5->LUMO (17%) HOMO->LUMO (11%) HOMO->LUMO+1 (9%) HOMO-1->LUMO+1 (5%)
- 485.68 0.0006 HOMO-5->LUMO (60%) MLCT HOMO->LUMO (16%) HOMO-6->LUMO (4%) HOMO->LUMO+2 (4%) HOMO-1->LUMO+1 (3%) HOMO-1->LUMO (2%)
- 475.65 0.0078 HOMO->LUMO (26%) MLCT 478 HOMO-1->LUMO (14%) HOMO-5->LUMO (14%) HOMO->LUMO+1 (13%) HOMO->LUMO+1 (8%) HOMO-1->LUMO+1 (6%) HOMO-2->LUMO+1 (2%) HOMO-1->LUMO+2 (2%) 0.0001 453.80 HOMO->LUMO+2 (52%) MLCT HOMO->LUMO+8 (7%)
 - HOMO-5->LUMO+2 (4%) HOMO->LUMO+3 (4%) HOMO-1->LUMO+3 (3%) HOMO->LUMO+4 (3%) HOMO-5->LUMO+8 (2%) HOMO->LUMO+6 (2%)

Methanol

 $[RuL^{1}(H_{2}O)(PPh_{3})]$

536.66	0.016	HOMO->LUMO+1 (18%) HOMO->LUMO+2 (54%) HOMO-4->LUMO+2 (3%) HOMO->LUMO+4 (4%) HOMO->LUMO+8 (9%) HOMO->LUMO+10 (2%)	MLCT	
483.20	0.016	HOMO->LUMO (88%) HOMO-1->LUMO+2 (4%)	MLCT	496
474.76	0.0034	HOMO-1->LUMO+1 (34%) HOMO-1->LUMO+2 (32%) HOMO->LUMO+1 (10%) HOMO-1->LUMO+8 (6%) HOMO->LUMO (6%) HOMO-1->LUMO+10 (3%)	MLCT	
459.78	0.0332	HOMO-1->LUMO+2 (10%) HOMO->LUMO+1 (63%) HOMO->LUMO+2 (18%)	MLCT	
445.62	0.0117	HOMO-1->LUMO (93%) HOMO->LUMO (3%)	MLCT	
436.38	0.0011	HOMO-2->LUMO+2 (43%) HOMO-1->LUMO+1 (12%) HOMO-2->LUMO+8 (9%) HOMO-2->LUMO+1 (8%) HOMO-3->LUMO+2 (6%) HOMO-2->LUMO+4 (3%)	MLCT	
429.44	0.003	HOMO-1->LUMO+1 (46%) HOMO-1->LUMO+2 (29%) HOMO-2->LUMO+2 (7%) HOMO-2->LUMO+1 (4%)	MLCT	
384.09	0.0012	HOMO->LUMO+3 (92%) HOMO->LUMO+4 (5%)	MLCT	395

379.30	0.0153	HOMO->LUMO+4 (78%) HOMO->LUMO+3 (7%) HOMO->LUMO+2 (6%)	MLCT		
373.56	0.2449	HOMO-2->LUMO (79%) HOMO-3->LUMO (8%) HOMO-1->LUMO+11 (5%) HOMO->LUMO+4 (2%)	MLCT		
		$[RuL^{1}(H_{2}O)(PPh_{3})]^{+}$			
1333.59	0.002	HOMO->LUMO (96%) HOMO-1->LUMO (2%)	MLCT	1134	
1124.37	0.0014	HOMO-1->LUMO (94%) HOMO->LUMO (2%)	MLCT		
955.56	0.1331	HOMO->LUMO+1 (93%)	MLCT		
888.33	0.0038	HOMO->LUMO+2 (93%) HOMO-1->LUMO+1 (2%)	MLCT		
780.02	0.0023	HOMO-1->LUMO+2 (82%) HOMO-1->LUMO+1 (12%)	MLCT		
761.81	0.0435	HOMO-1->LUMO+1 (68%) HOMO-2->LUMO (10%) HOMO-1->LUMO+2 (13%)	MLCT		
681.79	0.0117	HOMO-2->LUMO (76%) HOMO-1->LUMO+1 (7%) HOMO-2->LUMO+2 (5%) HOMO-12->LUMO (2%) HOMO->LUMO+2 (2%)	MLCT		
599.01	0.0049	HOMO-2->LUMO+1 (93%) HOMO-12->LUMO+1 (3%)	MLCT	602	

555.76	0.0261	HOMO-3->LUMO (76%) HOMO-2->LUMO+2 (8%) HOMO-10->LUMO (8%) HOMO-6->LUMO (2%)	MLCT		
541.01	0.0384	HOMO-2->LUMO+2 (63%) HOMO-3->LUMO (11%) HOMO-4->LUMO (10%) HOMO-10->LUMO+1 (3%) HOMO-6->LUMO (3%) HOMO-12->LUMO+2 (2%)	MLCT		
		[RuL ¹ (H ₂ O)(AcO)]			
965.99	0.0077	HOMO->LUMO (67%) HOMO-1->LUMO (27%) HOMO->LUMO+1 (3%) HOMO-1->LUMO+1 (2%)	MLCT	984	
912.59	0.0438	HOMO-1->LUMO (59%) HOMO->LUMO (29%) HOMO-1->LUMO+1 (8%)	MLCT		
796.00	0.0485	HOMO->LUMO+1 (86%) HOMO-1->LUMO+2 (4%) HOMO-1->LUMO (3%) HOMO-1->LUMO+1 (2%)	MLCT		
756.19	0.0029	HOMO-1->LUMO+1 (82%) HOMO-1->LUMO (6%) HOMO->LUMO+1 (6%) HOMO-1->LUMO+2 (3%)	MLCT		
696.07	0.0016	HOMO-1->LUMO+2 (71%) HOMO->LUMO+2 (20%) HOMO-1->LUMO+1 (3%) HOMO->LUMO+1 (3%)	MLCT		

HOMO-1->LUMO ((2%)
----------------	------

692.57	0.0225	HOMO->LUMO+2 (77%) HOMO-1->LUMO+2 (18%)	MLCT		
580.59	0.002	HOMO-2->LUMO (96%) HOMO-7->LUMO (2%)	MLCT	555	
516.36	0.0078	HOMO-3->LUMO (56%) HOMO-5->LUMO (27%) HOMO-6->LUMO (6%) HOMO-4->LUMO (4%) HOMO-2->LUMO+1 (2%)	MLCT		
513.31	0.0014	HOMO-2->LUMO+1 (94%)	MLCT		
503.14	0.0084	HOMO-1->LUMO+3 (54%) HOMO->LUMO+3 (24%) HOMO-5->LUMO (6%) HOMO-3->LUMO (5%)	MLCT		
		[RuL ¹ (AcO)(PPh ₃)]			
2657.75	0.0005	[RuL ¹ (AcO)(PPh ₃)] HOMO-1->LUMO (48%) HOMO->LUMO (37%) HOMO-3->LUMO (10%)	MLCT		
2657.75 801.09	0.0005	[RuL ¹ (AcO)(PPh ₃)] HOMO-1->LUMO (48%) HOMO->LUMO (37%) HOMO-3->LUMO (10%) HOMO-2->LUMO (54%) HOMO-1->LUMO (29%) HOMO-2->LUMO (13%) HOMO-3->LUMO (2%)	MLCT MLCT	939	
2657.75 801.09 663.80	0.0005 0.116 0.0126	[RuL ¹ (AcO)(PPh ₃)] HOMO-1->LUMO (48%) HOMO->LUMO (37%) HOMO-3->LUMO (10%) HOMO-1->LUMO (54%) HOMO-1->LUMO (29%) HOMO-2->LUMO (13%) HOMO-3->LUMO (2%) HOMO-1->LUMO (10%) HOMO-2->LUMO (2%)	MLCT MLCT MLCT	939	

		HOMO-3->LUMO (2%) HOMO-2->LUMO (2%)		
509.91	0.0002	HOMO-2->LUMO+2 (17%) HOMO-1->LUMO+3 (16%) HOMO->LUMO+3 (14%) HOMO->LUMo+2 (8%) HOMO-3->LUMO+3 (5%) HOMO-1->LUMO+9 (4%) HOMO-2->LUMO+8 (2%)	MLCT	506
486.77	0.0003	HOMO-5->LUMO (85%) HOMO->LUMO+1 (2%) HOMO-14->LUMO (2%) HOMO-10->LUMO (2%)	MLCT	
472.21	0.0034	HOMO->LUMO+1 (24%) HOMO->LUMO (22%) HOMO->LUMO+2 (19%) HOMO->LUMO+1 (8%) HOMO-1->LUMO+1 (7%) HOMO-6->LUMO (3%) HOMO-5->LUMO (2%)	MLCT	
462.92	0.0102	HOMO->LUMO (28%) HOMO->LUMO+1 (17%) HOMO-1->LUMO (13%) HOMO-2->LUMO+1 (5%) HOMO->LUMO+1 (5%) HOMO-5->LUMO (3%)	MLCT	
458.25	0.0001	HOMO-3->LUMO+2 (18%) HOMO-2->LUMO+3 (30%) HOMO-2->LUMO+9 (6%) HOMO-2->LUMO+2 (5%) HOMO-1->LUMO+3 (3%) HOMO-12->LUMO+2(2%) HOMO-10->LUMO+3 (2%)	MLCT	

HOMO-2->LUMO+7 (2%)

					B3LYP/D	GDZVP						
Gaseous state							Methanol					
Compounds	E _{HF}	HOMO (eV)	LUMO (eV)	ΔE (eV)	Hardnes s (η, eV)	Softness (σ, eV)	E _{HF}	HOMO (eV)	LUMO (eV)	ΔE (eV)	Hardness (η, eV)	Softness (σ, eV)
L ¹	-879.26	-5.252	-2.320	2.932	1.466	0.682	-879.27	-5.585	-2.479	3.105	1.553	0.644
$[RuL^1(H_2O)(PPh_3)]^+$	-6433.65	-8.516	-6.252	2.264	1.132	0.884	-6433.71	-6.244	-3.961	2.283	1.142	0.876
$[RuL^1(H_2O)(PPh_3)]$	-6433.77	-5.422	-2.546	2.876	1.438	0.695	-6433.87	-4.888	-1.562	3.326	1.663	0.601
[RuL ¹ (H ₂ O)(AcO)]	5625.79	-9.277	-7.657	1.621	0.810	1.234	-5626.06	-6.098	-3.109	2.189	1.094	0.914
[RuL ¹ (AcO)(PPh ₃)]	6585.69	-8.680	-7.233	1.447	0.724	1.382	-6585.75	-6.518	-5.062	1.456	0.728	1.373

Table S5. Electronic properties of ligand (L¹) and ruthenium complexes at gaseous state and methanol

Table S6. Condensed Mulliken charges of $[RuL^{1}(H_{2}O)(PPh_{3})]$, $[RuL^{1}(H_{2}O)(PPh_{3})]^{+}$, $[RuL^{1}(H_{2}O)(AcO)]$ and $[RuL^{1}(AcO)(PPh_{3})]$ at gaseous state and methanol.

B3LYP/DGDZVP									
Bond length of Ligands (Å)									
	L1	[RuL1(H2O)(PPh3)]	[RuL ¹ (H ₂ O)(PPh ₃)] ⁺	[RuL ¹ (H ₂ O)(AcO)]	[RuL ¹ (AcO)(PPh ₃)]				
C1	0.177	0.411	0.385	0.410	0.402				
C2	0.269	0.137	0.185	0.170	0.181				
C7	-0.087	-0.166	-0.163	-0.128	-0.175				
N1 _{imine}	-0.347	-0.314	-0.315	-0.340	-0.304				
C8	-0.359	-0.300	-0.361	-0.307	-0.374				
C9	-0.355	-0.348	-0.367	-0.349	-0.345				
N2 _{imine}	-0.209	-0.293	-0.308	-0.331	-0.275				

C10	-0.165	-0.163	-0.190	-0.141	-0.179
C11	0.160	0.127	0.166	0.166	0.185
C12	0.344	0.395	0.329	0.402	0.379
(0)1	-0.538	-0.635	-0.539	-0.584	-0.537
(0)2	-0.523	-0.636	-0.593	-0.583	-0.543
H ₂ O	-	-0.899	-0.842	-0.900	-
P1	-	0.491	0.625	-	0.588
Ru	-	0.762	0.853	1.130	0.921
Ac0	-	-	-	-0.394	-0.477
		Solvent methanol			
C1	0.157	0.361	0.388	0.390	0.384
C2	0.257	0.143	0.162	0.126	0.156
C7	-0.099	-0.196	-0.162	-0.137	-0.181
N1 _{imine}	-0.357	-0.300	-0.313	-0.331	-0.306
C8	-0.358	-0.362	-0.361	-0.328	-0.371
C9	-0.362	-0.360	-0.368	-0.331	-0.363
N2 _{imine}	-0.231	-0.288	-0.306	-0.317	-0.281
C10	-0.178	-0.216	-0.187	-0.140	-0.195
C11	0.145	0.128	0.158	0.127	0.165
C12	0.325	0.331	0.353	0.398	0.368
(0)1	-0.554	-0.577	-0.558	-0.623	-0.554
(0)2	-0.556	-0.614	-0.594	-0.592	-0.569
H ₂ 0	-	-0.850	-0.860	-0.854	-
P1	-	0.592	0.632	-	0.594
Ru	-	0.649	0.867	1.267	0.897
AcO	-		-	-0.545	

(a) B3LYP/DGDZVP								
	Hirshfeld charge			Fukui				
Atom	N	N+1	N-1	f	f^{*}	f^0		
C1	0.200	0.192	0.153	0.047	-0.008	0.173		
C2	0.269	0.296	0.242	0.028	0.026	0.269		
C3	-0.346	-0.303	-0.361	0.015	0.043	-0.332		
C4	-0.224	-0.184	-0.238	0.014	0.040	-0.211		
C5	-0.269	-0.215	-0.274	0.005	0.055	-0.244		
C6	-0.329	-0.277	-0.324	-0.005	0.052	-0.301		
C7	-0.108	-0.074	-0.155	0.047	0.034	-0.114		
N1 _{imine}	-0.328	-0.344	-0.383	0.055	-0.016	-0.364		
C8	-0.371	-0.340	-0.309	-0.062	0.031	-0.324		
С9	-0.365	-0.335	-0.300	-0.065	0.030	-0.318		
N2 _{imine}	-0.222	-0.198	-0.260	0.037	0.025	-0.229		
C10	-0.168	-0.158	-0.229	0.061	0.010	-0.194		
C11	0.166	0.169	0.135	0.032	0.003	0.152		
C12	0.353	0.358	0.305	0.048	0.005	0.332		
C13	-0.409	-0.373	-0.419	0.010	0.036	-0.396		
C14	-0.226	-0.186	-0.257	0.031	0.039	-0.222		
C15	-0.258	-0.222	-0.251	-0.007	0.036	-0.237		
C16	-0.319	-0.283	-0.340	0.022	0.036	-0.312		
(0)1	-0.539	-0.473	-0.588	0.048	0.066	-0.531		
(0)2	-0.535	-0.527	-0.573	0.038	0.008	-0.550		

Table S7. Condensed-to-atom Fukui Indexes for ligand (L^1) at gaseous state. (a) B3LYP/DGDZVP and (b) B3LYP/6-31G** basis sets.

(b) B3LYP/6-31G**								
	ľ	NPA charg	e	Fukui				
Atom	N	N+1	N-1	f	f^{+}	f^0		
C1	-0.199	-0.139	-0.191	-0.008	0.059	-0.165		
C2	0.387	0.444	0.360	0.027	0.057	0.402		
C3	-0.297	-0.245	-0.319	0.021	0.053	-0.282		
C4	-0.206	-0.200	-0.275	0.069	0.006	-0.237		
C5	-0.282	-0.161	-0.289	0.007	0.121	-0.225		
C6	-0.191	-0.195	-0.233	0.042	-0.004	-0.214		
C7	0.122	0.117	0.033	0.088	-0.005	0.075		
N1 _{imine}	-0.528	-0.481	-0.589	0.061	0.047	-0.535		
C8	-0.276	-0.282	-0.264	-0.012	-0.006	-0.273		
С9	-0.285	-0.291	-0.274	-0.011	-0.006	-0.282		
N2 _{imine}	-0.461	-0.428	-0.525	0.064	0.033	-0.477		
C10	0.091	0.089	0.021	0.070	-0.002	0.055		

C11	-0.158	-0.116	-0.169	0.011	0.042	-0.143
C12	0.356	0.402	0.338	0.018	0.046	0.370
C13	-0.321	-0.314	-0.347	0.027	0.007	-0.331
C14	-0.209	-0.171	-0.286	0.077	0.038	-0.228
C15	-0.269	-0.211	-0.272	0.003	0.058	-0.241
C16	-0.180	-0.189	-0.231	0.051	-0.009	-0.210
(0)1	-0.703	-0.600	-0.732	0.030	0.103	-0.666
(0)2	-0.698	-0.651	-0.706	0.009	0.047	-0.679

Fig. S1. The variation of bond length (M-Nimine) against the electron increase in the d-orbital of different divalent metal ions.

Fig. S2a. The optimized geometrical structural of $[RuL^{1}(H_{2}O)(PPh_{3})]$, $[RuL^{1}(H_{2}O)(PPh_{3})]^{+}$, $[RuL^{1}(H_{2}O)(AcO)]$ and $[RuL^{1}(AcO)(PPh_{3})]$ at gaseous state

Fig. S2b. The optimized geometrical structural of $[RuL^{1}(H_{2}O)(PPh_{3})]$, $[RuL^{1}(H_{2}O)(PPh_{3})]^{+}$, $[RuL^{1}(H_{2}O)(AcO)]$ and $[RuL^{1}(AcO)(PPh_{3})]$ in methanol

a)

LUMO+2

b)

c)

d)

Fig. S3. Frontier molecular orbitals (HOMOs and LUMOs) of complexes: a) $[RuL^{1}(H_{2}O)(PPh_{3})]$, b) $[RuL^{1}(H_{2}O)(PPh_{3})]^{+}$, c) $[RuL^{1}(H_{2}O)(AcO)]$ and d) $[RuL^{1}(AcO)(PPh_{3})]$ at gaseous state.

Fig. S4. a) Experimental UV-vis spectrum of $[RuL^1(H_2O)(PPh_3)]^+$; b) TD-DFT calculated spectrum using the B3LYP method in the gaseous state and considering methanol as solvent.

Fig. S5. TD-DFT spectra $[RuL^{1}(H_{2}O)(PPh_{3})]$, $[RuL^{1}(H_{2}O)(PPh_{3})]^{+}$ $[RuL^{1}(H_{2}O)(AcO)]$ and $[RuL^{1}(AcO)(PPh_{3})]$ at gaseous state.

Fig. S6. TD-DFT spectra $[RuL^1(H_2O)(PPh_3)]$, $[RuL^1(H_2O)(PPh_3)]^+ [RuL^1(H_2O)(AcO)]$ and $[RuL^1(AcO)(PPh_3)]$ in methanol.

Fig. S7. Limited detection by Fluorescence titration of $[RuL^{1}(H_{2}O)(PPh^{3})]^{+}$ with AcO⁻ ions.

a)

d)

Fig. S8. Frontier molecular orbitals (HOMOs and LUMOs) of complexes: a) $[RuL^{1}(H_{2}O)(PPh_{3})]$, b) $[RuL^{1}(H_{2}O)(PPh_{3})]^{+}$, c) $[RuL^{1}(H_{2}O)(AcO)]$ and d) $[RuL^{1}(AcO)(PPh_{3})]$ in methanol.

Fig. S9. Frontier molecular orbital energy level diagram of ruthenium complexes: a) $RuL^{1}(H_{2}O)(PPh_{3})]^{+}$, b) $[RuL^{1}(AcO)(PPh_{3})]$ and c) $[RuL^{1}(H_{2}O)(AcO)]$ at gaseous state.

Fig. S10. Frontier molecular orbital energy level diagram of ruthenium complexes: a) $RuL^{1}(H_{2}O)(PPh_{3})]^{+}$, b) $[RuL^{1}(AcO)(PPh_{3})]$ and c) $[RuL^{1}(H_{2}O)(AcO)]$ in methanol (1/2).

Fig. S11. Frontier molecular orbital energy level diagram of ruthenium complexes: a) $RuL^{1}(H_{2}O)(PPh_{3})]^{+}$, b) $[RuL^{1}(AcO)(PPh_{3})]$ and c) $[RuL^{1}(H_{2}O)(AcO)]$ in methanol (2/2).

Fig S12. Frontier molecular orbital energy level diagram of ruthenium complexes: [Ru(L¹(H₂O(PPh₃)] at gaseous state.

Fig S13. Frontier molecular orbital energy level diagram of ruthenium complexes: $[Ru(L^1(H_2O)(PPh_3))]$ in methanol.

Scheme S1. The variation of bond distances (axial and equatorial) during water and Phosphine substation in $[RuL^{1}(H_{2}O)(PPh_{3})]^{+}$ by AcO⁻ ion. a) Experimental, b) gaseous state and c) methanol.

Scheme S2. The variation of bond distances (axial and equatorial) during oxidation in $[RuL^{1}(H_{2}O)(PPh_{3})]$ to $[RuL^{1}(H_{2}O)(PPh_{3})]^{+}$ in methanol

Scheme S3. The variation of Bond Angle (°) during water and Phosphine substation in $[RuL^{1}(H_{2}O)(PPh_{3})]^{+}$ by AcO⁻ ion. a) Experimental, b) gaseous state and c) methanol.

References

- 1. Ru J, Gao F, Wu T, Yao MX, Li YZ, Zuo JL, (2014) Dalton Transactions 43: 933-936
- 2. Yoon JH, Yoo HS, Kim HC, Yoon SW, Suh BJ, Hong CS, (2009) Inorganic Chemistry 48: 816-818

3. Zhou YX, Zheng XF, Han D, Zhang HY, Shen XQ, Niu CY, Chen PK, Hou HW, Zhu Y, (2006) Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry 36: 693-699

4. Pointillart F, Bernot K, Sorace L, Sessoli R, Gatteschi D, (2007) Dalton Transactions 2689-2695

5. Birkmann B, Owens BT, Bandyopadhyay S, Wu G, Ford PC, (2009) Journal of Inorganic Biochemistry 103: 237-242

6. Duimstra JA, Stern CL, Meade TJ, (2006) Polyhedron 25: 2705-2709

7. Zhang YL, Ruan WJ, Zhao XJ, Wang HG, Zhu ZA, (2003) Polyhedron 22: 1535-1545

8. Kim HJ, Kim W, Lough AJ, Kim BM, Chin J, (2005) Journal of the American Chemical Society 127: 16776-16777

9. Pouralimardan O, Chamayou AC, Janiak C, Hosseini-Monfared H, (2007) Inorganica Chimica Acta 360: 1599-1608

10. Dong WK, Sun YX, Zhao CY, Dong XY, Xu L, (2010) Polyhedron 29: 2087-2097

11. Whiteoak CJ, de Rosales RTM, White AJP, Britovsek GJP, (2010) Inorganic Chemistry 49: 11106-11117

12. Xu ZJ, Fang R, Zhao C, Huang JS, Li GY, Zhu N, Che CM, (2009) Journal of the American Chemical Society 131: 4405-4417

13. Serron SA, Haar CM, Nolan SP, Brammer L, (1997) Organometallics 16: 5120-5123

14. Bottcher A, Elias H, Jager EG, Langfelderova H, Mazur M, Muller L, Paulus H, Pelikan P, Rudolph M, Valko M, (1993) Inorganic Chemistry 32: 4131-4138

15. Shi DH, Cao ZL, Liu WW, Xu RB, Zhang N, Gao LL, Zhang Q, (2012) Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry 42: 1128-1131

16. Shi DH, Zhang N, Liu WW, Gao LL, Zhang Q, You ZL, (2012) Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry 42: 1177-1182

17. Shi DH, Cao ZL, Liu WW, Xu RB, Gao LL, Zhang Q, (2012) Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry 42: 864-867