Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Template-directed synthesis of cucurbituril analogues using

propanediurea as building block

Yenan Shen, Lei Zou and Qiaochun Wang*

Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of

Chemistry & Molecular Engineering, East China University of Science & Technology,

Shanghai 200237, P.R. China.

* Corresponding author: qcwang@ecust.edu.cn

Supporting information

Table of contents:

1. General methods	2
2. Experimental section	2
3. Removal of metal ions	
4. Preparation of the single crystal of TD[n]s	5
5. Supplementary Figures	6
6. Details of the X-ray Crystal Structure	.错误!未定义书签。

1. General methods

¹H NMR and ¹³C NMR spectra were measured on a Brüker AV-400 spectrometer. The molecular mass spectra were recorded on a Waters LCT Premier XE mass spectrometer. Thermal stability was measured by thermogravimetric analysis with model SDT Q600 V8.3 Build 101.

Materials: Paraformaldehyde, H_2SO_4 , 1,1,3,3-tetramethoxypropane, urea, concentrated HCl, calcium chloride, barium chloride and solvents were used as supplied without further purification.

2. Experimental section

Scheme 1. The synthetic route of **TD**[**n**]s

1) Synthesis of propanediurea (**TD**)

1,1,3,3-tetramethoxypropane (100 ml, 0.61mol) was slowly dropped into the mixture of urea (84 g, 1.40mmol) and 1.8M H₂SO₄ (110 ml). The resulting solution was stirred and heated to 80°C for 6h, then cooled to room temperature and the solid was collected by filtration. The product was washed with acetone/water (1:3) twice and dried to give **TD** (56 g, 59%) as the white powder.

¹H NMR (400 MHz, DMSO-*d*₆, 298K): δ7.08(d, J=4Hz, 4H), 4.50(s, 2H), 1.96(s, 2H).

2) Synthesis of TD[4]·2CaCl₂

Paraformaldehyde (5.00g, 166.6mmol), **TD** (10g, 64.1mmol), CaCl₂ (1g, 9.0mmol) and 9M HCl (20ml) were mixed and the solution was heated to 100°C for 3.5h. The resulting mixture was cooled to room temperature. The precipitate was collected by filtration and transferred into 45ml water, after 12h of vigorous stirring, the insoluble part was removed. The filtrate was then concentrated and precipitate was collected and dried to give **TD[4]·2CaCl₂** (4.0g, 34%) as white powder.

¹H NMR (400 MHz, D₂O, 298 K): δ 6.35(d, J = 15.3 Hz, 8 H), 5.23(s, 8 H), 4.20(d, J = 15.2 Hz, 8H), 2.31(s, 8 H). ¹³C NMR (100 MHz, D₂O): δ 152.27, 69.63, 61.36, 28.46. HRMS *m/z* 743.2486 [M+Na]⁺. (calcd 743.2487)

3) Synthesis of TD[5]·2BaCl₂

The reaction was carried out as in the synthesis of **TD**[4]·2CaCl₂ except BaCl₂ (1.5g, 7.2mmol) was used instead of CaCl₂. The precipitate was collected by filtration, and then washed with 8ml*2 water/acetone (1:3) and dried. **TD**[5]·2BaCl₂ (4.3g, 37%) was obtained as white powder. ¹H NMR (400 MHz, D₂O, 298 K): δ 6.45(d, *J* = 15.0 Hz, 10 H), 5.27(s, 10 H), 4.17(d, *J* = 15.0 Hz, 10H), 2.31(s, 10 H). ¹³C NMR (100 MHz, D₂O): δ 154.86, 69.42, 61.22, 25.13. HRMS *m/z* 923.3155 [M+Na]⁺. (calcd 923.3434).

3. Removal of metal ions

1) Removal of Ca²⁺

TD[4] 2CaCl₂ (4.00 g, 4.25 mmol) and EDTA(2.48 g, 8.50 mmol) were added into the aqueous solution of tetrabutylammonium hydroxide (15% wt, 29.5g) and the resulting mixture was stirred and heated to 50°C for 5h. The solution was then cooled to room temperature and the precipitate was collected by filtration. The solid was washed with 5ml*2 H₂O and dried to give **TD[4]** (2.02 g, 66.5%) as white powder.

2) Removal of Ba²⁺

 $TD[5] \cdot 2BaCl_2$ (2 g, 1.52 mmol) was added into 0.9M sulfuric acid (20 ml) and the mixture was stirred at the room temperature for 3h. The BaSO₄ precipitate of was removed by filtration and the filtrate was poured into 100ml acetone. The solid was collected and washed with small amount of water/acetone 1: 3 and dried to give **TD[5]** (756 mg, 55%) as white powder.

4. Preparation of the single crystal of TD[n]s

The single crystals of **TD[4]·2CaCl₂** and **TD[5]·2BaCl₂** were prepared from their aqueous solutions (5.3mM and 7.6mM respectively) by slow diffusion of acetone vapor at room temperature. Colorless crystals were obtained after several weeks.

5. Supplementary Figures

Fig S1. The ¹H NMR spectra (400 MHz, DMSO- d_6 , 298 K) of **TD** and urea in HCI after heating for 4h at 100°C, indicating the formation of high purity of pyrimidinone.

Fig S2. The ¹H NMR spectra (400 MHz, D_2O , 298 K) of TD[4]·2CaCl₂

Fig S3. ¹H NMR spectra (400 MHz, D₂O, 298 K) of TD[5]·2BaCl₂

Fig S4. ¹³C NMR spectra (100 MHz, D₂O, 298 K) of TD[4]·2CaCl₂

Fig S5. ¹³C NMR spectra (100 MHz, D₂O, 298 K) of TD[5]·2BaCl₂

Elemental Composition Report

Single Mass Analysis Tolerance = 50.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 1166 formula(e) evaluated with 103 results within limits (up to 1 best isotopic matches for each mass) Elements Used: C: 0-49 H: 0-57 N: 0-16 O: 0-8 Na: 0-1 WANG-QC ECUST institute of Fine Chem 02-Mar-2017 14:10:30 1: TOF MS ES+ WQ-SYN-201 233 (2.929) Cm (233:236) 7.49e+003 743.2486 100-%-744.2508 706.7134 710.0 745.2563 761.2562 741.8546 753.2158 763.2681 m/z 745.0 750.0 755.0 760.0 765.0 770.0 714.9796 721.2698 715.0 720.0 725.0 731.2070 0^{_1},____ 700.0 740.0 705.0 735.0 Minimum: -1.5 100.0 Maximum: 30.0 50.0 i-FIT PPM DBE i-FIT (Norm) Formula Mass Calc. Mass mDa 743.2486 743.2487 -0.1 -0.1 20.5 141.5 0.0 C28 H32 N16 O8 Na

Fig S6. The HRMS spectra of TD[4].

Page 1

Fig S8. Thermogravimetric analysis of TD[4] and TD[5]

Fig S9. The single crystal structure of TD[4]·2CaCl₂

Fig S10. The single crystal structures TD[5]·2BaCl₂

元素分析

实验数据

				编号:20170278
送样单位	精细所	12310		
样品名称	syn-04, syn-05	1.1.1		111253
测试内容	N, C, H元素含量			
测试仪器	德国 elementar vario E	EL III	Contractor I	
分析结果:	winding	3353	014	ALL STREET
样品名称	称样量 (mg)	N%	C%	H%
syn-04	1.993	23.87	35.7	5 3.44
syn-04	2.037	23.81	35.7	5 3.46
syn-05	2.288	21.20	31.8	9 3.08
syn-05	2.003	21.23	31.84	4 3.06
STITE I				
adente-		<u>_</u>	测试日期	2017年6日15日

Fig S11. The Elemental Analysis of $TD[4] \cdot 2CaCl_2$ (syn-04) and $TD[5] \cdot 2BaCl_2$ (syn-05). The found average percentages of C, N and H of $TD[4] \cdot 2CaCl_2$ (C₂₈H₃₂N₁₆O₈Ca₂Cl₄) crystal were 35.75, 23.84 and 3.45, respectively (calculated values C: 35.74; N: 23.83; H: 3.43), and those of $TD[5] \cdot 2BaCl_2$ (C₃₅H₄₀N₂₀O₁₀Ba₂Cl₄) crystal were 31.86, 21.22 and 3.07, respectively (calculated values C: 31.87; N: 21.25; H: 3.06).

华东理工大学分析测试中心

原子光谱室

试验数据

Fig S12. The result of the atomic absorption spectrum test for the calcium content of TD[4] solution (100 mg/L, 1.4×10^{-4} M). The concentration of Ca²⁺ was 0.053 mg/L (1.3×10^{-6} M), indicating that >99% of the calcium ions in TD[4]·2CaCl₂ had been removed.

Figure S13. The result of the atomic absorption spectrum test for the barium content of TD[5] solution (100mg/L, 1.1×10^{-4} M). The concentration of Ba²⁺ was 0.034 mg/L (2.5×10^{-7} M), indicating that >99% of the barium ions in TD[5]·2BaCl₂ had been removed.

元素分析

实验数据

				编号: 20170138
送样单位(と学院			
样品名称Y	Y10150152-001, Y10150152-002			
测试内容 N	N, C, H 元素含量			
测试仪器(国 elementar vario E	el III		
分析结果:				
样品名称	称样量 (mg)	N%	C%	H%
Y10150152-001	1.574	31.14	46.65	4.42
Y10150152-001	1.540	31.18	46.67	4.48
Y10150152-002	1.840	31.11	46.65	4.40
Y10150152-002	1.954	31.10	46.65	4.43
9.) 10				
			测试日期	2017年4月6日

Figure S14. The Elemental Analysis of TD[4] (Y10150152-001) and TD[5] (Y10150152-002).

Fig S15. ¹H NMR spectra (400 MHz, D₂O, 298 K) of TD[4].

Fig S16. ¹H NMR spectra (400 MHz, D₂O, 298 K) of TD[5].

6. Details of the X-ray Crystal Structure

	TD[4]·2CaCl ₂
Chemical formula	C28 H44 Ca2 Cl4 N16 O17
Formula weight	1098.75
Temperature	223(2) K
Wavelength	0.71073Å
Crystal system	Monoclinic
Space group	C2/m
	a=14.953(2) Å α= 90 °
Unit cell dimensions	b=13.6358(18) Å β=95.389(2) °
	c=11.0501(15) Å γ=90 °
Volume	2243.1(5) Å ³
Z	2
Density (calculated)	1.627 Mg/cm ³
Absorption coefficient	0.580 mm ⁻¹
F(000)	1136
Crystal size	0.480×0.430×0.033 mm ³
Theta range for data collection	1.851 to 27.656°
Index ranges	$-15 \le h \le 19$, $-17 \le k \le 17$, $-14 \le l \le 14$
Reflections collected	8256
Independent reflections	2707 [R(int) = 0.0208]
Completeness to theta = 25.242°	99.4%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.746 and 0.672
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2707 / 30 / 198
Goodness-of-fit on F ²	1.099
Final R indices [I>2sigma(I)]	R1 = 0.0554, wR2 = 0.1923
R indices (all data)	R1 = 0.0607, wR2 = 0.2019
Extinction coefficient	n/a
Largest diff. peak and hole	1.216 and -0.479 e.Å ⁻³

Table S1: crystal data and structure refinement for TD[4]·2CaCl₂

	TD[5]·2BaCl ₂
Chemical formula	C35 H40 Ba2 Cl4 N20 O24
Formula weight	1541.33
Temperature	223(2) K
Wavelength	0.71073Å
Crystal system	Orthorhombic
Space group	Puma
	a=19.356(3) Å α= 90 °
Unit cell dimensions	b=11.1923(16) Å β =90°
	c=26.552(4) Å γ=90 °
Volume	5752.2(15) Å ³
Z	4
Density (calculated)	1.780 Mg/cm ³
Absorption coefficient	1.642 mm ⁻¹
F(000)	3048
Crystal size	0.780×0.400×0.200 mm ³
Theta range for data collection	1.534 to 27.585°
Index ranges	-22<=h<=25, -14<=k<=14, -34<=l<=30
Reflections collected	37628
Independent reflections	6994 [R(int) = 0.0360]
Completeness to theta = 25.242°	99.7%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.720 and 0.459
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6994 / 60 / 446
Goodness-of-fit on F ²	1.199
Final R indices [I>2sigma(I)]	R1 = 0.0563, wR2 = 0.1527
R indices (all data)	R1 = 0.0647, wR2 = 0.1577
Extinction coefficient	n/a
Largest diff. peak and hole	2.255 and -0.636 e.Å ⁻³

Table S2: crystal data and structure refinement for $TD[5] \cdot 2BaCl_2$