Supporting Information

Facile Synthesis of Tunable Plasmonic Silver Core/Magnetic Fe₃O₄ Shell Nanoparticles for Rapid Capture and Effective Photothermal Ablation of Bacterial Pathogens

Weijun Fang *, a, b, Hanyuan Zhang c, Xin Wang a, Wenmei Wei a, Yujun Shen a, Jishuang Yu a, Junxing Liang a, Jun Zheng * d, Yuxian Shen * a, b

a School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, P.R. China.
b Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, P.R. China.
c Department of Sports Medicine and Arthroscopic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P.R. China.
d Center of Modern Experimental Technology, Anhui University, Hefei 230601, P.R. China.

[*] Prof. Yuxian Shen, E-mail: shenyx@ahmu.edu.cn; Associate Prof. Weijun Fang, E-mail: wjf81@163.com; Jun Zheng, E-mail: jzheng@ahu.edu.cn

Figure S1. TEM images of Ag@Fe₃O₄ nanoparticles prepared at different AgNO₃/Fe(NO₃)₃ ratios: a) 1.0, b) 0.8, c) 0.65 , d) 0.4, e) 0.3, and f) 0.25, respectively.
Figure S2. Hysteresis loops of Ag@Fe$_3$O$_4$ and Ag@Fe$_3$O$_4$-PEI nanoparticles.

Figure S3. Zeta potential of *E.coli* BL21 and *S. aures* in ultra-pure water.

Figure S4. The photothermal stability of Ag@Fe$_3$O$_4$-PEI nanoparticles under 25-min irradiation with a 4 W/cm2 808 nm laser. a) TEM image of the Ag@Fe$_3$O$_4$-PEI nanoparticles before the laser irradiation. b) TEM image of the Ag@Fe$_3$O$_4$-PEI nanoparticles after the laser irradiation. c) UV-Vis-NIR spectra of Ag@Fe$_3$O$_4$-PEI nanoparticles before and after the laser irradiation.
Figure S5. Growth curves of *E. coli* BL21 (a) and *B. subtilis* (b) in LB liquid medium inoculated with 10^7 CFU/mL (0.02 OD$_{600}$) of bacteria in the presence of different concentrations of Ag@Fe$_3$O$_4$-PEI nanoparticles.

Figure S6. Antibacterial efficiency of Ag@Fe$_3$O$_4$-PEI nanoparticles (50 ppm) against *E. coli* BL21 (10^7 CFU/mL, 0.02 OD$_{600}$) under NIR laser irradiation with 10 min for five cycles.