Supporting Information for

Monodisperse melamine-formaldehyde polymer-modified silica core-shell microspheres prepared through a facile microwave-assisted method

Houmei Liu, Tianhang Liu, Makoto Takafuji, Hongdeng Qiu* and Hirotaka Ihara*

aKey Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

bDepartment of Applied Chemistry and Biochemistry, Faculty of Engineering, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan.

cUniversity of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.

Corresponding author: Tel: +86 931 4968877; fax: +86-931-8277088.

E-mail address: hdqiu@licp.cas.cn (H. Qiu); ihara@kumamoto-u.ac.jp
Materials

Melamine, indigo carmine, methylene blue and basic red 5 were all purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). Formaldehyde (37% wt), Na$_2$CO$_3$ and ethanol were obtained from Wako Chemicals (Tokyo, Japan). Silica (solid, 2 μm) was purchased from UBE EXSYMO CO., Ltd. (Tokyo, Japan). HCl was gotten from Nacalai Tesque (Kyoto, Japan)). Congo red was purchased from Sigma-Aldrich Co. LLC. (USA). All reagents were analytical grade and used without further purification.

Characterization

Silica@MF was prepared under Microwave irradiation in Microwave reactor (Monowave300, Anton Paar USA Inc., USA). The mode of elemental analyzer was Micro Corder JM10, J Science Co., Japan. The thermogravimetric analysis was performed on TGA, TG/DTA6200 (Seiko Instruments Inc., Japan). IR characterization was conducted on DRIFT-IR, FT/IR-4100 (JASCO Corporation, Japan). UV/Vis spectral analysis was conducted on JASCO V-560 spectrophotometer (Japan). TEMs were conducted on field- emission scanning electron microscopy (FE-SEM, SU-8000, Hitachi, Ltd, Japan).

Fig. S1 The TEM result of SiO$_2$@MF-B2-3.
Fig. S2 The IR results of SiO$_2$@MF-B1-1, SiO$_2$@MF-B2-1 and silica.