A facile one-pot synthesis of 2-amino-1, 3, 4-oxadiazole tethered peptidomimetics by molecular-iodine-mediated cyclodeselenization

L. Santhosh, C. Srinivasulu, S. Durgamma, Girish Prabhu and Vommina. V. Sureshbabu*

Room No. 109, Peptide Research Laboratory, Department of Chemistry, Central College Campus, Dr. B. R. AmbedkarVeedhi, Bangalore University, Bangalore 560 001, India. E-mail: sureshbabuvommina@rediffmail.com, hariccb@gmail.com, hariccb@hotmail.com.

Supporting information

Table of contents

S3..................Experimental procedure for the preparation of 2-amino-1, 3, 4-oxadiazole peptidomimetics 4a-j.

S4-S7............Characterization data for 2-amino-1, 3, 4-oxadiazole Peptidomimetics 4a-j and Selenosemicarbazide intermediate 3e

S8..............HRMS Spectrum of compound 3e and 1H NMR Spectrum of Compound 3e

S9..............13C NMR Spectrum of Compound 3e and 1H NMR Spectrum of Compound 4a

S10..............13C NMR Spectrum of 4a and 1H NMR Spectrum of Compound 4b

S11..............13C NMR Spectrum of Compound 4b and 1H NMR Spectrum of Compound 4c

S12..............13C NMR Spectrum of Compound 4c and 1H NMR Spectrum of Compound 4d
S13...........13C NMR Spectrum of Compound 4d and 1H NMR Spectrum of Compound 4e

S14...........13C NMR Spectrum of Compound 4e and 1H NMR Spectrum of Compound 4f

S15...........13C NMR Spectrum of Compound 4f and 1H NMR Spectrum of Compound 4g

S16...........13C NMR Spectrum of Compound 4g and 1H NMR Spectrum of Compound 4h

S17...........13C NMR Spectrum of Compound 4h and 1H NMR Spectrum of Compound 4i

S18...........13C NMR Spectrum of Compound 4i and 1H NMR Spectrum of Compound 4j

S19...........13C NMR Spectrum of Compound 4j

S20RP-HPLC profiles of compounds 4g and its epimer 4g*
Experimental section

All chemicals were used as obtained from Sigma Aldrich Company, USA. All the solvents were dried and purified using recommended procedures in the literature whenever necessary. High resolution mass spectra were recorded on a Micromass Q-TOF micromass spectrometer using electron spray ionization mode. 1H NMR and 13C NMR spectra were recorded on a Bruker AMX 400 MHz and 100 MHz spectrometer, respectively. Melting points were determined in an open capillary and are uncorrected. TLC experiments were done using MERCK TLC aluminum sheets (silica gel 60 F254) and chromatograms were visualized by exposing in iodine chamber and in UV-lamp. Column chromatography was performed on silica gel (100-200 mesh) using ethyl acetate and hexane mixture as eluent.

General procedure

Synthesis of 2-amino-1, 3, 4-oxadiazole peptidomimetics (4)

To a solution of Nα-protected amino acid hydrazide 1 (1.0 mmol) in THF (8 mL) was added a solution of isoselenocyanato ester 2 (1.0 mmol) and the reaction mixture was stirred for 1-2 h at room temperature till the complete conversion of starting materials (TLC analysis). Then the mixture is cooled to 0 °C and then TEA (2.0 mmol) was added followed by addition of iodine (1.0 mmol) portion-wise over 5 min. Stirring was continued for 15 min and during the reaction precipitation of reddish brown selenium powder was observed. After the reaction was completed (monitored by TLC), the selenium powder was filtered off and washed with THF (10 mL). The combined filtrate was concentrated under vacuum and the residue was diluted with EtOAc and washed with Sat.Na2S2O3, 10% citric acid, 5% Na2CO3, brine solution and finally dried over Na2SO4, and solvent was evaporated under reduced pressure, the resulting crude product was purified by column chromatography on silica gel (n-hexane-EtOAc = 7:3).
Characterization data:

(S)-methyl-2-(((S)-1-(((benzoyloxy)carbonyl)amino)ethyl)-1,3,4-oxadiazol-2-yl)amino)-3-methylbutanoate (4a)

White solid; yield: 92%; mp 132-133 °C; [α]^{26}_{D} (c 1.0, MeOH) -16.3; IR (v cm^{-1}): 1029, 1233, 1643, 1689, 1742, 2914, 2966, 3011, 3221, 3358; ^1H NMR (400 MHz, CDCl_3) δ: 0.80-0.88 (m, 6H), 1.25 (d, J = 6.8 Hz, 3H), 2.37-2.46 (m, 1H), 3.28 (d, J = 6.4 Hz, 1H), 3.53 (s, 3H), 4.86-4.92 (m, 1H), 5.15 (s, 2H), 6.08 (br s, 1H), 6.45 (br s, 1H), 7.30-7.39 (m, 5H); ^13C NMR (100 MHz, CDCl_3) δ: 16.3, 20.7, 29.8, 48.1, 50.1, 62.3, 68.1, 127.9, 128.3, 128.4, 138.4, 156.4, 159.3, 160.5, 171.7; HRMS (ESI): m/z calcd for C_{18}H_{24}N_{4}O_{5}Na [M + Na]^+ 399.1644, found: 399.1638.

(S)-methyl-2-(((S)-((tert-butoxycarbonyl)amino)(phenyl)methyl)-1,3,4-oxadiazol-2-yl)amino)-2-phenylacetate (4b)

White solid; Yield: 94%; mp 123-124 °C; [α]^{26}_{D} (c 1.0, MeOH) -2.3; IR (v cm^{-1}): 1167, 1245, 1365, 1630, 1692, 2952, 2977, 3033, 3063, 3275, 3369; ^1H NMR (400 MHz, CDCl_3) δ: 1.41 (s, 9H), 3.72 (s, 3H), 5.35 (s, 1H), 5.65 (d, J = 7.2 Hz, 1H), 5.92 (br s, 1H), 6.14 (s, 1H), 7.25-7.38 (m, 10H); ^13C NMR (100 MHz, CDCl_3) δ: 28.2, 53.1, 59.6, 63.6, 81.5, 126.9, 127.0, 127.2, 128.5, 128.8, 128.9 (2C), 135.7, 137.1, 154.9, 159.9, 162.2, 170.8; HRMS (ESI): m/z calcd for C_{23}H_{26}N_{4}O_{5}Na [M + Na]^+ 461.1801, found 461.1801.

(S)-ethyl-2-(((S)-1-(((benzoyloxy)carbonyl)amino)-2-phenylethyl)-1,3,4-oxadiazol-2-yl)amino)-4-methylpentanoate (4c)

White solid; Yield: 89%; mp: 141-143 °C; [α]^{26}_{D} (c 1.0, MeOH) -23.6; IR (v cm^{-1}): 1023, 1247, 1286, 1622, 1694, 1724, 2869, 2929, 2956, 3032, 3063, 3245, 3332; ^1H NMR (400 MHz, CDCl_3) δ: 0.95 (d, J = 6 Hz, 6H), 1.28 (t, J = 7.2 Hz, 3H), 1.62-1.74 (m, 3H), 3.10-3.20 (m, 1H), 3.21-3.31 (m, 1H), 4.18-4.23 (m, 2H), 4.32-4.40 (m, 1H), 5.09 (dd, J = 15.6 Hz, J = 12 Hz, 2H), 5.13-5.23 (m, 2H), 5.31 (br s, 1H), 7.10-7.15 (m, 2H), 7.21-7.38 (m, 8H); ^13C NMR (100 MHz, CDCl_3) δ: 14.2, 21.9, 22.8, 24.8, 39.2, 41.5, 48.7, 54.8, 61.7, 67.1, 127.1,
128.0, 128.2, 128.5, 128.6, 129.4, 129.5, 135.7, 136.2, 155.6, 159.9, 163.1, 173.1; HRMS (ESI):
m/z calcd for C_{26}H_{32}N_{4}O_{5}Na [M + Na]^+ 503.2270, found 503.2270.

(S)-methyl-2-((5-((S)-1-(((benzyl oxy)carbonyl)amino)-2-phenylethyl)-1,3,4-oxadiazol-2-yl)amino)-2-phenylacetate (4d)

White solid; Yield: 92%; mp: 140-142 °C; [α]_{D}^{26} (c 1.0, MeOH) -28.7; IR (ν cm\(^{-1}\)):
1027, 1246, 1636, 1692, 1734, 2924, 2953, 3030, 3063, 3086, 3229, 3312; \(^1\)H NMR (400 MHz, CDC\(_3\)) δ: 3.02-3.25 (m, 2H), 3.75 (s, 3H), 5.07 (dd, \(J = 18.8\) Hz, \(J = 12\) Hz, 2H), 5.16 (s, 1H), 5.21-5.29 (m, 1H), 5.35 (s, 1H), 5.9 (s, 1H), 6.98-7.45 (m, 15H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) δ: 39.2, 53.1, 59.6, 67.1, 127.1, 127.2 (2C), 128.0, 128.1, 128.4, 128.5, 128.9 (2C), 129.0, 129.3, 135.2, 135.4, 135.7, 155.4, 160.1, 162.0, 170.8; HRMS (ESI): m/z calcd for C\(_{27}\)H\(_{30}\)N\(_{4}\)O\(_{5}\)Na [M + Na]^+ 509.1801, found 509.1802.

(S)-methyl-2-((5-((S)-1-(((tert-butoxycarbonyl)amino)phenyl)methyl)-1,3,4-oxadiazol-2-yl)amino)-4-methylpentanoate (4e)

White solid; Yield: 93%; mp: 137-1390°C; [α]_{D}^{26} (c 1.0, MeOH) -25.1; IR (ν cm\(^{-1}\)):
1021, 1153, 1247, 1366, 1627, 1693, 1753, 2871, 2955, 3033, 3231, 3370; \(^1\)H NMR (400 MHz, CDC\(_3\)) δ: 0.90 (d, \(J = 6\) Hz, 6H), 1.38 (s, 9H), 1.60-1.75 (m, 3H), 3.70 (s, 3H), 4.30-4.41 (m, 1H), 5.10 (s, 2H), 5.39-5.44 (m, 1H), 5.75 (s, 1H), 7.10-7.17 (m, 2H), 7.19-7.31 (m, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) δ: 21.9, 22.8, 24.8, 28.3, 39.6, 41.5, 48.1, 52.6, 54.8, 80.2, 127.0, 128.6, 129.5, 135.9, 154.9, 160.2, 163.0, 173.5; HRMS (ESI): m/z calcd for C\(_{22}\)H\(_{32}\)N\(_{4}\)O\(_{5}\)Na [M + Na]^+ 455.2270, found 455.2270.

(S)-methyl-2-((5-((S)-(((benzyl oxy)carbonyl)amino)(phenyl)methyl)-1,3,4-oxadiazol-2-yl)amino)-4-methylpentanoate (4f)

White solid; Yield: 91%; mp: 121-1230°C; [α]_{D}^{26} (c 1.0, MeOH) -6.7; IR (ν cm\(^{-1}\)):
1040, 1153, 1249, 1624, 1688, 1746, 2870, 2955, 3033, 3230, 3299; \(^1\)H NMR (400 MHz, CDC\(_3\)) δ: 0.90 (d, \(J = 6\) Hz, 6H), 1.57-1.78 (m, 3H), 3.70 (s, 3H), 4.30-4.41 (m, 1H), 5.10 (s, 2H), 5.39
(br s, 1H), 6.0-6.12 (m, 2H), 7.21-7.40 (m, 10H); 13C NMR (100 MHz, CDCl$_3$) δ: 21.8, 22.6, 24.6, 41.6, 51.7, 52.5, 54.7, 67.3, 127.0, 128.1 (2C), 128.4, 128.6, 128.7, 128.9, 129.0, 135.9, 136.8, 155.3, 159.3, 163.2, 173.2; HRMS (ESI): m/z calcd for C$_{24}$H$_{28}$N$_4$O$_5$Na [M + Na]$^+$ 475.1957, found 475.1956.

(S)-methyl-2-((5-(S)-1-(((benzyloxy)carbonyl)amino)-2-phenylethyl)-1,3,4-oxadiazol-2-yl)amino)propanoate (4g)

White solid; yield: 90%; mp 171-172 °C; [α]26D (c 1.0, MeOH) -21.3; IR (ν cm$^{-1}$): 1043, 1288, 1635, 1698, 1744, 2933, 2972, 2988, 3028, 3042, 3266, 3318; 1H NMR (400 MHz, CDCl$_3$) δ: 1.33 (d, J = 7.2 Hz, 3H), 3.09 (d, J = 7 Hz, 1H), 3.21 (d, J = 7 Hz, 1H), 3.73 (s, 3H), 3.96-4.01 (m, 1H), 5.07 (s, 2H), 5.32-5.37 (m, 1H), 5.85 (br s, 1H), 6.05 (br s, 1H), 7.25-7.42 (m, 10H); 13C NMR (100 MHz, CDCl$_3$) δ: 15.2, 38.6, 52.1, 54.2, 58.4, 64.2, 127.1, 127.8, 128.2, 128.6, 129.4, 129.7, 137.2, 138.2, 156.3, 158.6, 163.8, 171.9; ESI-MS: m/z calcd for C$_{22}$H$_{24}$N$_4$O$_5$Na [M + Na]$^+$ 447.1644, found: 447.1642.

(2S,3R)-methyl-2-((5-(S)-1-(((benzyloxy)carbonyl)amino)-2-phenylethyl)-1,3,4-oxadiazol-2-yl)amino)-3-methylpentanoate (4h)

White solid; Yield: 91%; mp 116-118 °C; [α]26D (c 1.0, MeOH) -10.3; IR (ν cm$^{-1}$): 1024, 1244, 1284, 1621, 1688, 1737, 2877, 2923, 2962, 3032, 3061, 3246, 3326; 1H NMR (400 MHz, CDCl$_3$) δ: 0.88-0.97 (m, 6H), 1.16-1.31 (m, 2H), 1.94-2.04 (m, 1H), 3.11-3.19 (m, 1H), 3.23-3.28 (m, 1H), 3.76 (s, 3H), 5.08 (dd, J = 20.8 Hz, J = 12.8 Hz, 2H), 5.15-5.22 (m, 1H), 5.26-5.41 (m, 3H), 7.11-7.36 (m, 10H); 13C NMR (100 MHz, CDCl$_3$) δ: 11.6, 14.2, 26.1, 37.6, 48.5, 52.4, 59.6, 60.6, 67.1, 127.0, 128.0, 128.1, 128.5, 128.6, 129.3, 135.4, 135.5, 155.4, 159.8, 163.4, 172.6; HRMS (ESI): m/z calcd for C$_{25}$H$_{30}$N$_4$O$_5$Na [M + Na]$^+$ 489.2114, found 489.2112.

(S)-ethyl-2-((5-((1S,2S)-1-(((benzyloxy)carbonyl)amino)-2-methylbutyl)-1,3,4-oxadiazol-2-yl)amino)-2-phenylacetate (4i)

White solid; Yield: 92%; mp: 143-144 °C; [α]26D (c 1.0, MeOH) -35.1; IR (ν cm$^{-1}$): 1026, 1152, 1249, 1621, 1688, 1737, 2877, 2923, 2962, 3032, 3061, 3246, 3326; 1H NMR (400 MHz, CDCl$_3$) δ: 0.88-0.97 (m, 6H), 1.16-1.31 (m, 2H), 1.94-2.04 (m, 1H), 3.11-3.19 (m, 1H), 3.23-3.28 (m, 1H), 3.76 (s, 3H), 5.08 (dd, J = 20.8 Hz, J = 12.8 Hz, 2H), 5.15-5.22 (m, 1H), 5.26-5.41 (m, 3H), 7.11-7.36 (m, 10H); 13C NMR (100 MHz, CDCl$_3$) δ: 11.6, 14.2, 26.1, 37.6, 48.5, 52.4, 59.6, 60.6, 67.1, 127.0, 128.0, 128.1, 128.5, 128.6, 129.3, 135.4, 135.5, 155.4, 159.8, 163.4, 172.6; HRMS (ESI): m/z calcd for C$_{25}$H$_{30}$N$_4$O$_5$Na [M + Na]$^+$ 489.2114, found 489.2112.
3033, 3233, 3307; 1H NMR (400 MHz, CDCl$_3$) δ: 0.83-0.90 (m, 6H), 1.03-1.18 (m, 2H), 1.23 (t, $J = 7.2$ Hz, 3H), 1.35-1.48 (m, 1H), 4.20-4.27 (m, 2H), 4.51 (br s, 1H), 4.68 (s, 1H), 5.10 (dd, $J = 15.3$ Hz, $J = 12.1$ Hz, 2H), 5.35 (d, $J = 6.8$ Hz, 1H), 6.07 (br s, 1H), 7.27-7.44 (m, 10H); 13C NMR (100 MHz, CDCl$_3$) δ: 11.3, 13.9, 15.0, 24.8, 38.4, 51.9, 59.7, 62.3, 67.1, 127.1, 128.1 (2C), 128.4, 128.7 (2C), 128.8, 128.9, 136.0, 155.7, 159.9, 161.9, 170.4; HRMS (ESI): m/z calcd for C$_{25}$H$_{30}$N$_{4}$O$_{5}$Na [M + Na]$^+$ 489.2114, found 489.2113.

(S)-methyl-2-((5-((S)-1-((tert-butoxycarbonyl)amino)-2-phenylethyl)-1,3,4-oxadiazol-2-yl)amino)-3-phenylpropanoate (4j)

![Chemical structure of 4j](image1)

White solid; yield: 94%; mp: 146-148 °C; $[\alpha]^{26}_D$ (c 1.0, MeOH) -17.1; IR (ν cm$^{-1}$): 1112, 1266, 1645, 1698, 1745, 2958, 2966, 3033, 3068, 3075, 3258, 3383; 1H NMR (400 MHz, CDCl$_3$) δ: 1.39 (s, 9H), 3.08-3.31 (m, 4H), 3.75 (s, 3H), 4.66 (d, $J = 6.4$ Hz, 1H), 5.09 (br d, $J = 6.8$ Hz, 1H), 5.19 (br s, 1H), 6.51 (br s, 1H), 7.05-7.30 (m, 10H); 13C NMR (100 MHz, CDCl$_3$) δ: 28.3, 37.7, 39.6, 48.1, 52.7, 56.8, 80.8, 127.1, 127.4, 128.6, 128.7, 129.4, 129.5, 135.3, 135.8, 154.9, 160.4, 162.3, 171.6; HRMS (ESI): m/z calcd for C$_{25}$H$_{30}$N$_{4}$O$_{5}$Na [M + Na]$^+$ 489.2114, found: 489.2114.

(2S, 8S)-methyl-8-benzyl-2-isobutyl-12,12-dimethyl-7,10-dioxo-4-selenoxo-11-oxa-3,5,6,9-tetraazatridecan-1-oate (3e)

![Chemical structure of 3e](image2)

1H NMR (400 MHz, CDCl$_3$) δ: 0.93-0.96 (m, 6H), 1.40 (s, 9H), 1.66-1.90 (m, 3H), 2.92-3.02 (m, 1H), 3.20-3.26 (m, 1H), 3.69 (s, 3H), 4.29 (br s, 1H), 5.01-5.19 (m, 2H), 7.21-7.35 (m, 5H), 7.73 (br s, 1H), 8.54 (br s, 1H), 9.04 (br s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ: 21.6, 21.8, 22.8, 28.2, 37.3, 40.3, 52.4, 56.2, 58.8, 81.2, 127.0, 128.7, 129.0, 129.2, 136.5, 155.9, 170.3, 173.1, 181.7; HRMS (ESI): m/z calcd for C$_{22}$H$_{34}$N$_{4}$O$_{5}$SeNa [M + Na]$^+$ 537.1592, found: 537.1593.
HRMS Spectrum of 3e

\[^1\text{H} \text{ NMR spectrum of } 3e \]
13C NMR spectrum of 3e

1H NMR spectrum of 4a
13C NMR spectrum of 4a

1H NMR spectrum of 4b
13C NMR spectrum of 4b

1H NMR spectrum of 4c
^{13}C NMR spectrum of 4c

^1H NMR spectrum of 4d
13C NMR spectrum of 4d

1H NMR spectrum of 4e
13C NMR spectrum of 4e

1H NMR spectrum of 4f
13C NMR spectrum of 4f

1H NMR spectrum of 4g
13C NMR spectrum of 4g

1H NMR spectrum of 4h
13C NMR spectrum of 4h

1H NMR spectrum of 4i

S17
13C NMR spectrum of 4i

1H NMR spectrum of 4j
13C NMR spectrum of 4j
RP-HPLC profiles of Cbz-Phe-ψ-[C$_2$N$_2$O]-NH-L-Ala-OMe (4g) and Cbz-Phe-ψ-[C$_2$N$_2$O]-NH-D-Ala-OMe (4g*) (method: gradient 0.1% TFA water-acetonitrile; acetonitrile 30-100% in 30 min; VWD at $\lambda = 254$ nm; flow rate: 0.5 mL/min; column: Agilent Eclipse, XDB-C18, pore size-5 μm, diameter x length = 4.6 x 150 mm).