Electronic Supporting Information

Crown ether triad modified core-shell magnetic mesoporous silica nanocarrier for pH-responsive drug delivery and magnetic hyperthermia applications

Madhappan Santha Moorthy, Subramanian Bharathiraja, Panchanathan Manivasagan,

Kang Dae Lee and Junghwan Oh,*,

a Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan-48513, Republic of Korea

b Marine-Integrated Bionics Research Center, Pukyong National University, Busan-48513, Republic of Korea

c Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan-48513, Republic of Korea

*Email: jungoh@pknu.ac.kr
Fig. S1 (a) TEM; and (b) SEM images of the magnetic Fe$_3$O$_4$ nanoparticles.

Fig. S2 TGA curves of (a) FeNP@SiOH@GPTMS NPs; (b) FeNP@SiOH@EDA NPs and (c) FeNP@SiOH@CET NPs.
Fig. S3 Zeta potentials of FeNP@SiOH@EDA and FeNP@SiOH@CET nanoparticles as a function of different pH conditions.
Fig. S4 Thermal response curves of FeNP@SiOH@CET NPs dispersed in water with the different concentrations and subjected to an AMF (f = 409 kHz and H = 180 Gauss).

![Bar graph showing SAR values of Fe_{3}O_{4} and FeNP@SiOH@CET NPs](image)

Fig. S5 The SAR values of pristine Fe_{3}O_{4} nanoparticles and FeNP@SiOH@CET NPs under magnetic field frequency f = 409 kHz and applied magnetic field H = 180 Gauss.

Fig. S6 Wide scan X-ray photoelectron spectra of (a) FeNP@SiOH@CET NPs; and (b) FeNP@SiOH@EDA NPs, respectively.

![X-ray photoelectron spectra](image)
Fig. S7 UV-vis spectra of (a) initial concentration of Dox solution; and (b) final concentration of Dox solution after absorption by FeNP@SiOH@CET NPs.