Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supporting Information

Synthesis of cubic spherosilicates for self–assembled organic–inorganic biohybrids based on functionalized methacrylates

Łukasz John*, Mateusz Janeta and Sławomir Szafert

Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland

Table of contents

No.	Figures	Page
1.	Fig. S1 FTIR of 3	S2
2.	Fig. S2 FTIR of 4	S2
3.	Fig. S3 FTIR of polymerized 3	S3
4.	Fig. S4 FTIR of polymerized 4	S3
5.	Fig. S5 TGA of 3	S4
6.	Fig. S6 TGA of 4	S4
7.	Fig. S7 TGA of polymerized 3	S5
8.	Fig. S8 TGA of polymerized 4	S5
9.	Fig. S9 DSC of 3	S6
10.	Fig. S10 DSC of 4	S6
11.	Fig. S11 DSC of polymerized 3	S7
12.	Fig. S12 DSC of polymerized 4	S7
13.	Fig. S13 ¹ H NMR of 3	S8
14.	Fig. S14 ¹³ C NMR of 3	S8
14.	Fig. S15 ²⁹ Si NMR spectrum of 3	S9
15.	Fig. S16 COSY NMR of 3	S9
16.	Fig. S17 NOESY NMR of 3	S10
17.	Fig. S18 HMQC NMR of 3	S10
18.	Fig. S19 HMBC NMR of 3	S11
19.	Fig. S20 ¹ HNMR of 4	S11
20.	Fig. S21 COSY NMR of 4	S12
21.	Fig. S22 NOESY NMR of 4	S12
22.	Fig. S23 HMQC NMR of 4	S13
23.	Fig. S24 HMBC NMR of 4	S13

Fig. S3 FTIR of polymerized 3.

Fig. S4 FTIR of polymerized 4.

Fig. S6 TGA of 4.

Fig. S8 TGA of polymerized 4.

Fig. S10 DSC of 4.

Fig. S12 DSC of polymerized 4.

Fig. S13 ¹H NMR spectrum of 3.

Fig. S14 ¹³C NMR of 3.

Fig. S16 COSY ¹H-¹H NMR of 3.

Fig. S20 ¹H NMR of 4.

Fig. S21 COSY NMR of 4.

Fig. S22 NOESY NMR of 4.

3.7

3.5

3.3

L₁₉₀

0.5

0.7

0.9