Supplementary information

4-Bis (4-aminophenoxy)phenoxy derivitized phthalocyanine conjugated to metallic nanoparticles, searching for enhanced optical limiting materials.

Njemuwa Nwaji, John Mack and Tebello Nyokong

Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa

5-level model rate equations S1-S7 follow

\[
\frac{dN_0}{dt} = -\frac{\delta_0 I N_0}{\hbar \omega} - \frac{\beta I^2}{2\hbar \omega} + \frac{N_0}{\tau_0} + \frac{N_2}{\tau_1} \]
(S1)

\[
\frac{dN_1}{dt} = \frac{\delta_1 I N_1}{\hbar \omega} + \frac{\delta_0 I N_0}{\hbar \omega} - \frac{N_0}{\tau_0} - \frac{N_0}{\tau_{isc}} + \frac{N_1}{\tau_1} \]
(S2)

\[
\frac{dN_2}{dt} = \frac{\delta_1 I N_1}{\hbar \omega} + \frac{\beta I^2}{2\hbar \omega} - \frac{N_1}{\tau_1} \]
(S3)

\[
\frac{dN_3}{dt} = -\frac{\delta_2 I N_3}{\hbar \omega} - \frac{N_2}{\tau_2} + \frac{N_0}{\tau_{isc}} + \frac{N_3}{\tau_3} \]
(S4)

where \(\delta_0, \delta_1\) and \(\delta_2\) are the ground, singlet and triplet excited state absorption cross section respectively, \(\hbar\) is Planck’s constant, \(\omega\) is the frequency of light, the \(N_i\) values represent the populations in the different states; \(\beta\) is the two photon absorption (TPA) cross-section, the \(\tau_i\) values are the lifetimes of the excited states; and \(\tau_{isc}\) is the lifetime of intersystem crossing.

The intensity transmitted through the sample is represented as \(I\).

The intensity transmitted through the sample \((I)\) is given by equations

\[
\frac{dl}{dt} = c \frac{dl}{n_r dz} = c \frac{l}{n_r} \left[\delta_0 N_1 + \delta_1 N_2 + \delta_2 N_3 \right] \]
(S5)
\[I = I_{00} \left(\frac{\omega_0^2}{\omega^2(z)} \right) \exp\left(-\frac{t^2}{\tau_p^2} \right) \exp\left(-\frac{2r^2}{\omega^2(z)} \right) \]
With \(\omega(z) = \omega_0 \sqrt{1 + \left(\frac{Z}{Z_0} \right)^2}; \ Z_0 = \frac{\pi \omega_0^2}{\lambda} \)

(56)

(7)

where \(n_r \) is the refractive index (\(n_r = 1.479 \) in DMSO), \(c \) is the speed of light in vacuum, \(I_{00} \) is the peak intensity at the focus of Guassian beam; \(\tau_p \) is the input pulse width; \(\omega_0 \) is beam waist at focus, \(z_0 \) is Rayleigh range and \(r \) is the radius of the aperture. \(dI/dz \) in eq. S5 describes the change of photon flux with propagation of laser light through the sample with \(z \) as the position of the sample in the beam profile.

Supporting Figures
Fig. S1 NMR spectrum of complex 6 in DMSO-d$_6$ (insert, expanded section of the spectra)
Fig. S2: MALDI-TOF mass spectra of complex 6 (insert, simulated isotropic mass distribution)
Fig. S3: Absorption spectra of 3 (5.0 μM) in aqueous solution containing different ratio of AuNPs or AgNPs
Fig. S4: Absorption spectra of (A) 6 (i), OA-AgNPs (ii) and 6SA-AgNPs (iii), (B), 6 (i) GSH-AuNPs (ii) and 6CB-AuNPs (iii) in DMSO.

Fig. S5: Representative EDX spectra of glutathione functionalized nanoparticles alone and when conjugated to complex 6
Fig. S6: High resolution XPS spectrum of N 1s for 6SA-AgNPs and 6CB-AgNPs

Fig S7: Fluorescence lifetime decay curve of complex 6 in DMSO
Fig. S8: Triplet decay curve of 6CB-AuNPs in DMSO

Fig. S9: Transmission vs. input fluence (I_o) curve for complex 6 and its nanoconjugates
Table S1. TD-DFT spectra of the B3LYP optimized geometries for 6 with a four-fold symmetric set of attachments calculated with the CAM-B3LYP functional and 6-31G(d) basis sets.

<table>
<thead>
<tr>
<th>Band#</th>
<th>Calc</th>
<th>Exp</th>
<th>Wave Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>1</td>
<td>16.0 626 (0.49)</td>
<td>14.7 680</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16.1 620 (0.72)</td>
<td>93% 1a_1u → 1e_g*; ...</td>
</tr>
<tr>
<td>B1</td>
<td>12</td>
<td>32.4 309 (0.70)</td>
<td>38.7 348</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>32.6 307 (1.13)</td>
<td>45% 1a_2u → 1e_g*; 16% H−4^h → 1e_g*; 11% 1b_2u → 1e_g*; ...</td>
</tr>
<tr>
<td>B2</td>
<td>18</td>
<td>34.4 291 (0.38)</td>
<td>--- ---</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>34.4 290 (0.43)</td>
<td>--- ---</td>
</tr>
</tbody>
</table>

a – Band assignment described in the text. b – The number of the state assigned in terms of ascending energy within the TD-DFT calculation. c – Calculated band energies (10^13 cm^-1), wavelengths (nm) and oscillator strengths in parentheses (f). d – Observed energies (10^13 cm^-1) and wavelengths (nm) in Figure 1. e – The wave functions based on the eigenvectors predicted by TD-DFT with one-electron transitions associated with Gouterman’s 4-orbital model highlighted in bold. The symmetry notations in each case used refer to the D_{4h} symmetry of the parent monomeric Pc(−2) ligand to facilitate a comparison. Only one-electron transitions that provide a greater than 10% contribution are included and a Ph superscript is used to denote MOs that are localized primarily on the phenoxy substituents.