Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information

N,P-co-doped 3D Graphene/Cobalt-Embedded Electrocatalyst for

Oxygen Reduction Reaction

Xiao-Li Hu, Xu-Hong Dai, Xing-Quan He*

School of Chemistry and Chemical Engineering, Changchun University of Science

and Technology, Changchun 130022, P. R. China

^{*} Corresponding author. Tel.+86-431-85583430

E-mail address: hexingquan@hotmail.com (Xingquan He)

	Co Content (%)	N Content (%)	P Content (%)	
Co/N,P-GAs-800	0.37	2.86	0.14	
Co/N,P-GAs-900	0.29	2.93	0.12	
Co/N,P-GAs-1000	0.23	1.63	0.11	
N-GAs-900	0	1.80	0	

Table S1 Related atom contents of the samples determined by XPS analysis.

Table S2 Related N atom contents of the samples determined by XPS analysis.

Samples	N	Pyridinic N		Pyrrolic N		Graphitic N	
	Content	B.E.	Content	B.E.	Content	B.E.	Content
	(%)	(eV)	(%)	(eV)	(%)	(eV)	(%)
Co/N,P-GAs-900	2.93	398.2	0.79	399.3	0.82	401.1	1.32
N-GAs-900	1.80	398.2	0.49	399.3	0.32	401.1	0.99

Table S3 Relative surface concentrations of nitrogen species obtained by fitting high-resolution N1s XPS spectra of samples.

Samples	pyridinic-N	pyrrolic-N	graphitic-N
Co/N,P-GAs-800	29.68	28.71	41.61
Co/N,P-GAs-900	27.19	27.82	44.99
Co/N,P-GAs-1000	22.52	26.78	50.70

Table S4 Relative surface concentrations of phosphorus species obtained by fittinghigh-resolution P 2p XPS spectra of samples.

	1 1		
Samples	P-C	P-N	C-O-PO ₃
Co/N,P-GAs-800	60.71	24.41	14.88
Co/N,P-GAs-900	33.99	34.99	31.02
Co/N,P-GAs-1000	57.73	13.41	28.86

Electrocalyst	$\triangle E_{\text{onset}}^{a,c}(V)$	$\triangle E_{1/2}^{\mathbf{a},\mathbf{c}}(\mathbf{V})$	j _L ^{b,c} (mA	Loading	Reference	Ref.
			cm ⁻²)	(µg cm ⁻²)	electrode	
Co/N,P-GAs-900	-0.03	-0.02	5.22	280	SCE	This Work
N-G ₇₅₀	~-0.11	~-0.17	4.27	Not given	Ag/AgCl	1
N-doped GNR aerogel	0.01	-0.06	2.2	Not given	Ag/AgCl	2
CNPS-900	-0.192	-0.056	3.01	159	SCE	3
B,N-graphene	-0.11	-0.13	5.2	280	RHE	4
GNSP-31	0.030	0.025	6.39	Not given	Ag/AgCl	5
PSNG1:10	-0.052	0.015	5.05	280	SCE	6
Co ₃ O ₄ /rmGO	~-0.93	-0.07	~5.00	Not given	RHE	7
NiCo ₂ O ₄ -G	~-0.12	~-0.11	~-4.10	407	SCE	8
TTF-700-96	-0.14	-0.07	5.0	300	RHE	9
CoFe ₂ O ₄ /rGO	-0.136	-0.08	~-6.40	1006	Ag/AgCl	10

Table S5 The comparison of the ORR performance of different catalysts in 0.1 MKOH electrolyte.

^a Represents the difference in onset potential or half-wave potential between the various catalysts and Pt/C.

^b Represents the diffusion-limited current density of the various catalysts at a rotation speed of 1600 rpm.

^c The onset potential (E_{onset}), half-wave potential ($E_{1/2}$) and diffusion limited current density (j_{L}) were obtained from the corresponding literatures and the corresponding figures in the present study.

Refrence:

[1] Hou Z, Jin Y, Xi X, Huang T, Wu D, Xu P, Liu R (2017) Hierarchically porous nitrogen-doped graphene aerogels as efficient metal-free oxygen reduction catalysts J Colloid Interf Sci 488317-321.

[2] Gong YJ, Fei HL, Zou XL, Zhou W, Yang SB, Ye GL, Liu Z, Peng ZW, Lou J,Vajtai R, Yakobson BI, Tour JM, Ajayan PM (2015) Boron- and Nitrogen-Substituted

Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction. Chem. Mater 27: 1181-1186.

[3] Dou S, Shen A, Ma Z L, Wu J H, Tao L, Wang S Y (2015) N-, P- and S-tridoped graphene as metal-free electrocatalyst for oxygen reduction reaction. J Electroanal. Chem 753: 21-27.

[4] Zhen Y, Jiao Y, Ge L, Jaroniec M, S Z Qiao (2013) Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew Chem Int Ed 52: 3110-3116.

[5] F Razmjooei, K P Singh, M Y Song, J S Yu (2014) Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: A comprehensive study. Carbon 78: 257-267.

[6] Wang Y, Zhang B, Xu M, He X (2015) Tunable ternary (P, S, N)-doped graphene as an efficient electrocatalyst for oxygen reduction reaction in an alkaline medium. Rsc Adv 5:86746-86753.

[7] Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, Dai H J (2011) Co_3O_4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10: 780-786.

[8] Lee DU, Kim BJ, Chen ZW (2013) One-pot synthesis of a mesoporous $NiCo_2O_4$ nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst. J Mater Chem A 1: 4754-4762.

[9] L Hao, S Zhang, R Liu, J Ning, G Zhang, L Zhi (2015) Bottom-up construction of triazine-based frameworks as metal-free electrocatalysts for oxygen reduction reaction. Adv Mater 27: 3190-3195.

[10] Bian W, Yang Z, Strasser P, Yang R (2014) A CoFe₂O₄/graphene nanohybrid as an effi cient bi-functional electrocatalyst for oxygen reduction and oxygen evolution. J Power Sources, 250: 196-203.

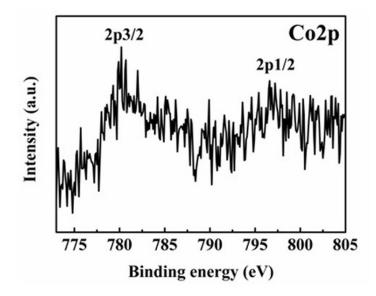
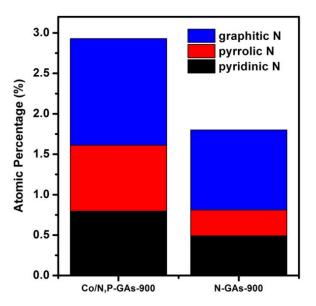
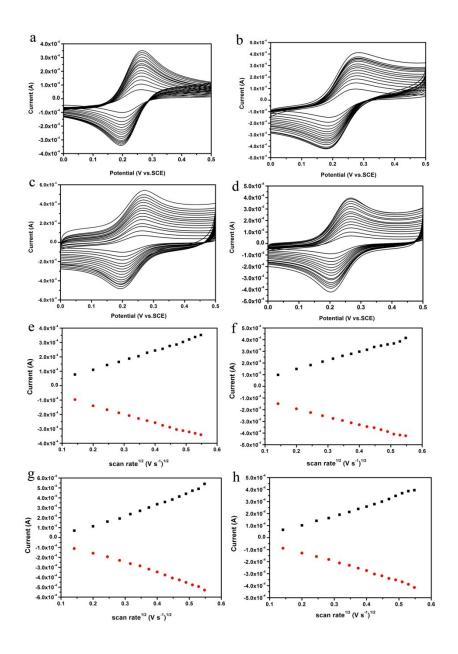
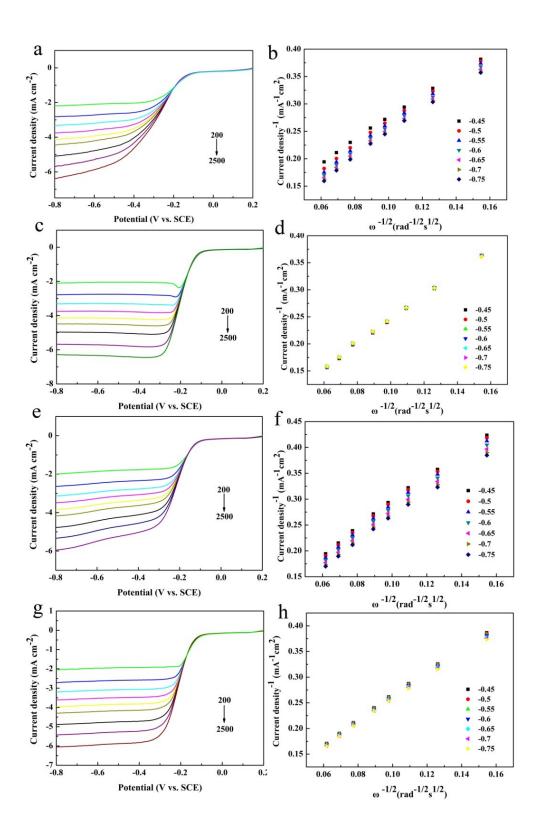
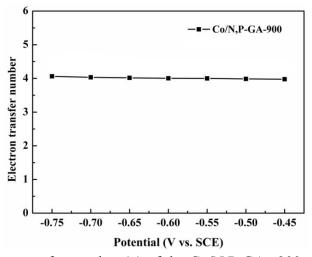




Fig. S1 High resolution Co 2p spectrum of Co/N,P-GAs-900.

Fig. S2 The atomic percentages of deconvoluted N 1s peaks of Co/N,P-GAs-900 and N-GAs-900.


Fig. S3 CV curves of bare GC electrode (a) Co/N,P-GAs-800 (b), Co/N,P-GAs-900 (c) and Co/N,P-GAs-1000 (d) in 5 mM Fe(CN)₆^{3-/4-/1} M KCl at various scan rates from 20 to 300 mV s⁻¹; plots of $i_p vs.v^{1/2}$ for bare GC electrode (e) Co/N,P-GAs-800 (f), Co/N,P-GAs-900 (g) and Co/N,P-GAs-1000 (h).

The electrochemically assessible surface area can be estimated according to the Randles-Sevcik equation given below:


$$i_{\rm p} = 2.99 \times 10^5 n \text{ACD}^{1/2} v^{1/2}$$

Where i_p is the peak current, D and C are the diffusion coefficient and bulk

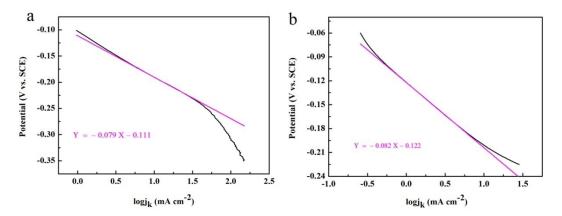

concentration of the redox probe (5 mM K₃[Fe(CN)₆]), respectively. *n* is the number of electrons transferred (n = 1), *v* is the scan rate and A is the electrochemically assessible surface area. Consequently, the electrochemically assessible surface areas of Co/N,P-GAs-800, Co/N,P-GAs-900 and Co/N,P-GAs-1000 were estimated according to the slope of the straight line of i_p versus $v^{1/2}$.

Fig. S4 LSV curves of (a) N-GA-900, (c) Co/N-GA-900, (e) Co/N,P-GA-800 and (g) Co/N,P-GA-1000 in an O₂-saturated 0.1 M KOH electrolyte at 1600 rpm with a scan rate of 10 mV s⁻¹; The corresponding Kouteckey-Levich plots of (b) N-GA-900, (d) Co/N-GA-900, (f) Co/N,P-GA-800 and (h) Co/N,P-GA-1000.

Fig. S5 The electron transfer number (n) of the Co/N,P-GAs-900 according to the K-L plots.

Fig. S6 Tafel plots obtained from the LSV measurements on the (a) Co/N,P-GAs-900 and (b) Pt/C at the rotation speed of 1600 rpm, respectively.