Supporting Information

Fe$_3$O$_4$-Ag$_2$WO$_4$: Facile synthesis, characterization and visible light assisted photocatalytic activity

Satheesh Rajamohan a,1, Vignesh Kumaravel b,1*, Rajarajan Muthuramalingamc**, Suganthi Ayyadurai d, Ahmed Abdel-Wahab b, Byeong Sub Kwak e, Misook Kang e, Srimala Sreekantan f

aDepartment of Chemistry, Sethu Institute of Technology, Madurai, 626115, Tamilnadu, India
bChemical Engineering Program, Texas A&M University at Qatar, Doha -23874, Qatar
cP.G. & Research Department of Chemistry, C.P.A College, Bodinayakanur, 626513, Tamilnadu, India.
dP.G. & Research Department of Chemistry, Thiagarajar College, Madurai, 625009, Tamilnadu, India.
eDepartment of Chemistry, College of Science, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea.
fSchool of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.

Fig. S1. Molecular structure of Fast green (FG)
Fig. S2. Nitrogen adsorption–desorption isotherms for as-prepared Fe_3O_4, Ag_2WO_4 and Fe_3O_4–Ag_2WO_4.
Fig. S3. The band gap energy values of Fe$_3$O$_4$, Ag$_2$WO$_4$ and Fe$_3$O$_4$–Ag$_2$WO$_4$ nano-composite
Fig. S4. Plot of COD removal efficiency vs irradiation time for the photo-degradation of FG