Supporting Information

FRET based selective and ratiometric detection of Al(III) with livecell imaging

Abhishek Manna*, Dibyendu Sain, Nikhil Guchhait and Shyamaprosad Goswami*.

1. Calculation of the detection limit:

Figure S1: Fl. Intensity ratio (F₄₉₀/ F_{585 nm}) Vs. Conc. of Al³⁺ plot.

The detection limit DL of CRH for Al³⁺ was determined from the following equation [S1].

DL = K* Sb1/S, Where K = 2 or 3 (we take 2 in this case); Sb1 is the standard deviation and S is the slope of the calibration curve. From the graph we get slope = 51491, and Sb1 value is 0.017991. Thus using the formula we get the Detection Limit = 0.69 μ M i.e. CRH can detect Al³⁺ in this minimum level.

2. Job plot by fluorescence method:

Stock solution of same concentration of sensor (CRH) and Al³⁺ were prepared in the order of \approx 2.0 x 10⁻⁵ mL⁻¹ EtOH: HEPES buffer (3:7, v/v) at pH 7.4. The absorbance in each case with different host–guest ratio but equal in volume was recorded. Job plots were drawn by plotting $\Delta I.X_{host}$ vs X_{host} (ΔI = change of intensity of the emission spectrum during titration and Xhost is the mole fraction of the host in each case, respectively).

Figure S2: Job plot by fluorescence method.

3. Calculation of association constant using Emission Titration Data:

From the fluorescence titration data the association constant (Ka) for the formation of respective complex CRH-Al³⁺ was calculated by nonlinear curve fitting procedure. The non linear curve fitting was done using the following equation (1). [S2] CRH-Al³⁺ complex

$$I = I_0 + \frac{I_{lim} - I_0}{2C_H} \left\{ C_H + C_G + \frac{1}{K_a} - \left[\left(C_H + C_G + \frac{1}{K_a} \right)^2 - 4C_H C_G \right]^{1/2} \right\}$$
(1)

Where I_0 , I, and I_{lim} are the respective emission intensity of free CRH, CRH present in the form of [CRH-Al³⁺] in the complex, and CRH in presence of excess amounts of Al³⁺ ions where the

emission intensity reaches a limiting value. C_H and C_G are corresponding concentrations of host and cationic guest; Ka is the binding constant. The binding constant (Ka) and correlation coefficients (R) were obtained from a non-linear least-square analysis of I vs. C_H and C_G .

The association constant (K_a) as determined by fluorescence titration method for CRH with Al³⁺ found to be 5.03 x 10⁴ M⁻¹.

4. Spectral data of CRH:

¹H- NMR of the receptor (CRH):

Expansion of ¹H-NMR of receptor:

ESI-MS of CRH:

5. Absorption spectra of CRH:

Figure S3: UV-vis response of CRH (2.0 x 10^{-5} M) towards tested cations (Al³⁺, K⁺, Ag⁺, Zn²⁺, Cu²⁺, Cd²⁺, Pd²⁺, Co²⁺, Hg²⁺, Fe³⁺, Ga³⁺, In³⁺, Cr³⁺) at pH 7.4 in EtOH: HEPES buffer (3:7, v/v).

Figure S4: Ratiometric response of CRH (2.0 x 10^{-5} M) towards tested cations (K⁺, Ag⁺, Zn²⁺, Cu²⁺, Cd²⁺, Pd²⁺, Co²⁺, Hg²⁺, Fe³⁺, Ga³⁺, In³⁺, Cr³⁺) at pH 7.4 in EtOH: HEPES buffer (3:7, v/v).

6. Emission spectra of CRH:

7. Cytotoxicity experiment of CRH:

Figure S5: MTT assay with different concentration of probe (CRH) after 24h.

8. References:

[S1]. M. Zhu, M. Yuan, X. Liu, J. Xu, J. Lv, C. Huang, H. Liu, Y. Li, S. Wang, D. Zhu, *Org. Lett.* 2008, **10**, 1481.

[S2] (a) B. Valeur, J. Pouget, J. Bouson, *J. Phys. Chem.*, **1992**, *96*, 6545. (b) K. Ghosh, T. Sarkara, A. Samadder, *Org. Biomol. Chem.* **2012**, *10*, 3236.