Supplementary material

Controllable and green synthesis of robust graphene aerogels with tunable surface properties for oil and dyes adsorption

Lijuan Qiua,b, Wenchao Wanb, Zhongqiu Tongb, Ruiyang Zhangb, Lina Lic, Ying Zhoua,b,*

a) State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China.

b) The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China.

c) Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 China.

*To whom correspondence should be addressed

Ying Zhou, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500, China.

Email: yzhou@swpu.edu.cn; Tel: +86 2883037411
Fig. S1. (a) The diagram of vacuum system equipment for continuous oil removal from water; (b) The device for continuous oil removal from water.

Fig. S2. (a) XRD patterns and (b) TG of GA-12.
Fig. S3. The electrical resistivity of GA-3, GA-5, GA-7, GA-9, GA-11 and GA-12.

Fig. S4. The photograph of GA-12.
Fig. S5. The photographs of (a) the hydrogel and (b) the aerogels of GA-5 prepared in the absence of VC.

Fig. S6 Photographs of GA-5 (0.024g, 9 mg/cm3, 1.5 cm in diameter, 1.5 cm in height) supporting a bunch of coins (the mass of each coin is ~6 g).
Fig. S7. FT-IR spectra of VC solution at different pH values.

Fig. S8. (a) The chemical reaction process of VC under acidic conditions; (b) The reaction pathway of VC under alkaline conditions.
Fig. S9. The photographs of GA-5 before and after continuous separation experiment.

Fig. S10. The structure of methyl blue, methylene blue (MB), methyl orange (MO) and rhodamine B (RhB).