Electronic Supplementary Information (ESI)

Ammonia vapour sensing properties of in-situ polymerized conducting PANI-nanofiber/WS$_2$ nanosheet composites

Ravindra Kumar Jha a, Meher Wan b, Chacko Jacob, c and Prasanta Kumar Guhad,*

aSchool of Nano Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India-721302

bAdvanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India-721302

cMaterials Science Centre, Indian Institute of Technology, Kharagpur, West Bengal, India-721302

dDepartment of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India-721302

Corresponding Author:

*Prasanta Kumar Guha

Phone No: +91-3222-283538

Email: pkguha@ece.iitkgp.ernet.in
<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Content</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>FESEM images</td>
<td>3-6</td>
</tr>
<tr>
<td>2.</td>
<td>TEM Images</td>
<td>7-12</td>
</tr>
<tr>
<td>3.</td>
<td>XRD</td>
<td>13</td>
</tr>
<tr>
<td>4.</td>
<td>Raman</td>
<td>14</td>
</tr>
<tr>
<td>5.</td>
<td>Response from as-synthesized PANI nanofibers based ammonia sensors</td>
<td>15</td>
</tr>
<tr>
<td>6.</td>
<td>I-V Characteristics of sensing devices loaded with different sensing nanomaterials</td>
<td>16</td>
</tr>
<tr>
<td>7.</td>
<td>Generation of Ammonia vapours from aqueous ammonia solution</td>
<td>16-18</td>
</tr>
<tr>
<td>8.</td>
<td>Humidity Sensing Properties of PANI/WS₂ (10%) nanocomposite</td>
<td>18-19</td>
</tr>
<tr>
<td>9.</td>
<td>Effect of Humidity on Ammonia Sensing Properties of PANI/WS₂ (10%) nanocomposite and Response of PANI/WS₂ (10%) nanocomposite to dry ammonia gas</td>
<td>19-20</td>
</tr>
<tr>
<td>10.</td>
<td>Resistance change in PANI/WS₂(10%)nanocomposite in presence of aqueous ammonia</td>
<td>21</td>
</tr>
<tr>
<td>11.</td>
<td>Reference</td>
<td>21</td>
</tr>
</tbody>
</table>
1. FESEM images
Fig. S1. FESEM image of (a) Pure PANI (b) PANI/WS$_2$ (5 wt.%) (c) PANI/WS$_2$ (20 wt.%) (d) PANI/WS$_2$ (30 wt.%).
2. TEM images
Fig. S2. (a) TEM image of PANI/WS$_2$ (5 wt%) nanocomposite and (b) its SAED pattern (c) TEM image of PANI/WS$_2$ (20 wt%) nanocomposite and (d) its SAED pattern (e) TEM image of PANI/WS$_2$ (30 wt%) nanocomposite and (f) its SAED pattern.
3. XRD

Fig. S3. XRD pattern of nanocomposites and nanomaterials.
4. Raman Spectra

Fig. S4. Raman Spectra of different nanostructured materials synthesized in this work.
5. **Response from as-synthesized PANI nanofibers based ammonia sensors**

The response of pure PANI nanofibers based ammonia sensor is shown in Figure S5.

![Graph showing response from PANI nanofibers over time](image)

Fig. S5. Response from as-synthesized PANI.
6. I-V Characteristics of sensing devices loaded with different sensing nanomaterials

The current (I)-voltage (V) characteristics of PANI, WS$_2$, and PANI/WS$_2$(10%) based devices at room temperature is shown in Figure S6.

Fig. S6. current (I)-Voltage (V) characteristics of devices loaded with (i)PANI nanofibers (ii) WS$_2$ (iii) PANI/WS$_2$ (10%) nanocomposite.
7. Generation of Ammonia vapours from aqueous ammonia solution

We have obtained ammonia vapour from aqueous ammonia solution which has been discussed in the literature as well [1]. Briefly, the calculation is shown below:

We have used a 25% ammonia solution which has a density of 0.91 g/ml.

Since 100 ml of this solution has 25×0.91 g of ammonia

And subsequently, 1 L (1000 ml) of this solution has $25 \times 0.91 \times 10$ g = $25 \times 0.91 \times 10^4$ mg

Concentration = $25 \times 0.91 \times 10^4$ mg/1L = 227500 ppm

Different ammonia concentration was prepared by diluting this solution by DI water.

Furthermore, the values were confirmed by calculating ammonia concentration in the chamber by another method. In this method, weight % (wt.%) of ammonia in the aqueous ammonia solution was first calculated as

$$\text{wt.% } (\text{NH}_3) = \frac{W_{\text{NH}_3}}{W_{\text{NH}_3} + W_{\text{H}_2\text{O}}} \times 100 \quad (1)$$

Further, vapour over aqueous ammonia solution was calculated from wt% of NH$_3$ vs partial pressure of NH$_3$ (P_{NH_3}) curve as shown below (for 0°C of NH$_3$, this condition is maintained by keeping ammonia solution in ice bath during measurement). This curve was obtained from ammonia data sheet.
Fig. S7. Vapour over aqueous ammonia solution.

After obtaining P_{NH_3} the concentration of ammonia in the chamber is calculated as

$$\text{Total concentration of NH}_3\text{ (in ppm)} = \frac{P_{NH_3}}{P_{air}(760\text{ mm of Hg})} \times 10^6 \quad (2)$$

Further, concentration of NH$_3$ in the chamber was calculated as

$$\text{conc. of NH}_3\text{ in the chamber (in ppm)} = \frac{\text{flow of NH}_3\text{ (in sccm)}}{\text{Total Flow (in sccm)}} \times \text{ (total conc. of NH (in ppm))} \quad (3)$$

8. **Humidity Sensing Properties of PANI/WS$_2$ (10%) nanocomposite**

We have also tested the capabilities of the sensing device towards humidity sensing. An opposite behavior was observed in the response than ammonia i.e. the current was found to be increasing with relative humidity (RH%) level due to proton conductivity which is an established fact in literature [2]. Therefore we can say that PANI/WS$_2$ nanocomposite based sensor is selective towards ammonia as compared to humidity as the response of our device to even low ammonia concentration is much higher (i.e.81% @ 200 ppm ammonia). However a small change in current for high humidity change from 25% RH (6020 ppm of water molecule) to 80% RH or(20370 ppm of water molecule).
Fig. S8. Variation in Current and Response (%) with RH (%).

9. **Effect of Humidity on Ammonia Sensing Properties of PANI/WS$_2$ (10%) nanocomposite and response of PANI/WS$_2$ (10%) nanocomposite to dry ammonia gas**

Further we measured effect of humidity on ammonia sensing properties of PANI/WS$_2$(10%) nanocomposite. The comparison of the dynamic responses of the sensor in presence of humidity (here 60% RH) and in absence of this is shown in Figure S9(a). It was found that the overall response decreases by 4-6% in presence of 60% RH. Sorption of H$_2$O molecule on backbone of PANI nanofibers (by formation of hydrogen bond) is an established fact. Therefore, competitive sorption between H$_2$O and NH$_3$ molecules is responsible for this decrement in response [3]. We have also measured response of our sensor towards dry ammonia gas. The response of the sensor to this gas is shown in Figure S9(b). An enhancement in response of 1.5-7% was observed as compared to aqueous ammonia vapours.
Fig. S9. (a) Response in presence of 60% RH and in absence of humidity (b) And response to dry ammonia gas.
10. Resistance change in PANI/WS$_2$ (10%) nanocomposite

Figure S10 shows the change in resistance in PANI/WS$_2$ (10%) nanocomposite. The response is shown in Figure 6 (a) of the main manuscript.

Fig. S10. Variation in Current at different concentration of ammonia in PANI/WS$_2$(10%) nanocomposite based ammonia sensor and its corresponding response (in inset).

References

