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1. Spectral discussion of compounds 6a and 12b

The IR spectra of compounds 7b showed a strong band at 1580 c¢cm'! (Figure S1-3
Supplementary data) that attributed to azomethine v (~CH=N) stretching. In addition, a band at
3450 cml, is assigned to the —OH group present in the Schiff compound. Hence the IR spectral
data illustrate the formation of the Schiff derivatives. Furthermore, s-Triazine derivatives show
another important band in the region 1576 cm ascribed to —C=N stretching vibration of s-
Triazine ring and the —CT™-O- absorption is observed as a distinct band at 1363—-1374 cm™! (6a).
This is attributed to the involvement of carbon atom of triazine ring in hydroxyl linkage. Hence
the IR spectral data illustrate the formation of the morpholino based 1,3,5-triazine Schiff base
derivatives. Moreover, the absence of bands around 3200 and 3350-3400 cm™! due to secondary
amine (—-NH) stretching and —OH stretching of morpholine and phenol respectively indicates the

condensation of secondary amine and Schiff base in s-triazine derivatives. Further, the structure



was assigned by chemical shifts and coupling constant obtained from NMR spectral data. In 'H
NMR spectrum, singlets at 8.72 & 8.96 ppm (4a and 7a) (Figures S1-5 Supplementary data) are
assigned for azomethine (~CH=N) group. Another sharp singlet at 10.61-13.75 ppm with an
integral value corresponding to one proton suggests the presence of a hydroxyl group (Ph-OH).
Moreover, in the 13C spectrum of compounds 4a and 7a absorptions due to azomethine (-
CH=N) carbon at 163.0 and 162.5 ppm confirmed the formation of Schiff base compounds.
Surprisingly, all the fluorine substituted phenyl carbons resonate as doublets due to the presence
of highly electronegative fluorine present in the phenyl heterocyclic ring. Generally, fluorine

atom substituted compounds show off splitting two separate signals adjacent to each other.
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The NMR spectroscopic assignment of compounds 6a and 12b

Compounds 6a and 12b were taken as a representative compound and the signals were
assigned based on the correlations in the 2D spectra. The 1D ('"H & 3C NMR) and 2D NMR
(HMBC) spectra of compound 6a are shown in Figures S6-8 (Supplementary data (S)) for the
remaining compounds, the signals were assigned based on the spectral values compound 6a. In

'"H NMR spectrum, the singlet at 9.76 ppm is assigned for azomethine (-CH=N) group. Beside



the absence of —OH and —NH peaks confirm the condensation between Schiff base and
morpholine to form s-Triazine scaffold derivatives. Moreover, two triplets due to C-2" proton
and C-2" proton of the morpholine moiety resonates closely at 3.73 and 3.98 ppm respectively
with apiece eight integral values for presence of two morpholine moieties confirmed the
formation of compound 6a in di-morpholino based s-triazine Schiff base derivatives. In '3C
spectra, peaks at 191.0 ppm and 163.7 ppm were unambiguously assigned to C-2 and C-4/C-6
carbons, and the azomethine (—CH=N) carbon absorbs at 163.0 ppm (C-14). Further, this
assignment was substantiated by HMBC analysis. The HMBC spectrum reveals that the signal at
7.75 ppm (C-9 hydrogen) showing y correlation with C-6 s-triazine carbon at 191.0 ppm, and
imine carbon (—-CH=N) at 163.4 ppm. Moreover, the signal at 163.4 ppm shows beta correlation
with C-10 proton (Figure S8). In addition, The C-2" and C-4" protons also show [ correlation
with C-2 and C-4 s-triazine carbons at 163.7 ppm. Based on the hetero-nuclear correlation,
compound 6a confirms the formation morpholine based s-triazine Schiff base scaffold

derivatives.

In '"H NMR spectrum of 12b, the broad singlet appeared in the region of 10.78 ppm with
one proton integral and one sharp singlet appeared in the region of 9.76 ppm with one proton
integral, respectively assigned to —NH proton and -CH=N azomethine proton for compound 12b
(Figure S11). In 'H spectra ('H-'H COSY), peaks at 6.96 ppm and 7.74 ppm were
unambiguously assigned to C-9 and C-10 protons, respectively. Moreover, compound 12b shows
two up field (having one methyl and one methane at carbon 14" and 157) signals appeared at 1.28
and 2.49 ppm confirmed by the 'TH-'H COSY correlation (Figure S13). Further, this assignment
was substantiated by HSQC analysis (Figure S14). In 13C NMR spectrum of compound 12b, the

signals at 14.59 and 63.67 ppm in the aliphatic region are assigned to 14" and 15'carbons of the



ethoxybenzo[d]thiazol ring, respectively. Another six chemical shift values observed at 115.83,
120.8, 126.4, 129.5, 132.0, and 163.3 ppm are assigned for (C-9, C-19, C-17, C-18, C-10 and C-
14 (-CH=N) carbons of the Schiff base moiety) shows one bond correlation with signal at 6.96,
7.40, 7.27, 7.40, 7.74, 9.76 ppm. In addition, the HMBC (Figure S15) spectrum reveals that the
signal at 7.74 ppm (132.0 ppm, H-9 hydrogen) shows gamma correlation with C-6 and C-14 at,
s-triazine carbon at 190.9 ppm and 163.3 ppm (—C=NH) azomethine carbon (Fig. 5). Also the
signal at 162.5 ppm shows a correlation with 7.74 ppm (H-9), moreover, the signal at 6.96 ppm

shows a correlation with 128.3 ppm (C-10) and B correlation with 162.5 ppm (C-8).



2. Molecular Docking Results (2D structure of compounds 5a-d, 6a-c, 8a-c, 9a-b, 12a-¢, and

13a-c¢)
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