Supporting Information

Diketopyrrolopyrrole Based Organic Semiconductors with Different Numbers of Thiophene Units: Symmetry Tuning Effect on Electronic Devices

Qian Liu,a# Abhijith Surendran,b# Krishna Feron,c,d Sergei Manzhos,e Xuechen Jiao,f Christopher R. McNeill,f Steven E. Bottle,a John Bell,a Wei Lin Leong*b,g and Prashant Sonar*a

a School of Chemistry, Physics and Mechanical Engineering (CPME), Queensland University of Technology (QUT), Brisbane QLD 4000, Australia
b School of Electrical & Electronic Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue 639798, Singapore
c CSIRO Energy Centre, 10 Murray Dwyer Circuit, Mayfield West, NSW 2304, Australia
d Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308, Australia
e Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1 117576, Singapore
f Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
g School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637459, Singapore

Both authors contributed equally
Figure S1. 1H NMR spectrum of DPP13T.

Figure S2. 13C NMR spectrum of DPP13T.

Figure S3. HRMS spectrum of DPP13T.
Figure S4. 1H NMR spectrum of DPP23T.

Figure S5. 13C NMR spectrum of DPP23T.

Figure S6. HRMS spectrum of DPP23T.
Figure S7. 1H NMR spectrum of DPP33T.

Figure S8. 13C NMR spectrum of DPP33T.

Figure S9. HRMS spectrum of DPP33T.
Figure S10. Optical microscope images of spin-coated DPP13T (a), DPP23T (b) and DPP33T (c) films.

Figure S11. Mobility values for spin-coated DPP13T, DPP23T and DPP33T based bottom contact transistors.

Table S1 Comparison of OFET mobility for small molecules based on DPP.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Device Configuration</th>
<th>μ_e cm2 V$^{-1}$ s$^{-1}$</th>
<th>μ_h cm2 V$^{-1}$ s$^{-1}$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPP13T</td>
<td>BG/BC</td>
<td>---</td>
<td>1.18×10^{-4}</td>
<td>This study</td>
</tr>
<tr>
<td>DPP23T</td>
<td>BG/BC</td>
<td>---</td>
<td>4.67×10^{-4}</td>
<td>This study</td>
</tr>
<tr>
<td>DPP33T</td>
<td>BG/BC</td>
<td>---</td>
<td>1.11×10^{-3}</td>
<td>This study</td>
</tr>
<tr>
<td>LGC-D118</td>
<td>TG/BC</td>
<td>---</td>
<td>3.04</td>
<td>S1</td>
</tr>
<tr>
<td>LGC-D127</td>
<td>TG/BC</td>
<td>---</td>
<td>3.16</td>
<td>S2</td>
</tr>
<tr>
<td>DDPP-TTAR</td>
<td>BC/TG</td>
<td>---</td>
<td>9.1×10^{-2}</td>
<td>S3</td>
</tr>
<tr>
<td>Si1TDPP-EE-C6</td>
<td>BG/TC</td>
<td>5.1×10^{-4}</td>
<td>3.7×10^{-3}</td>
<td>S4</td>
</tr>
<tr>
<td>DPPa</td>
<td>BG/BC</td>
<td>---</td>
<td>5.91×10^{-3}</td>
<td>S5</td>
</tr>
<tr>
<td>DPPb</td>
<td>BG/BC</td>
<td>3.4×10^{-3}</td>
<td>---</td>
<td>S5</td>
</tr>
<tr>
<td>DPP-2T2P-2DCV</td>
<td>BG/TC</td>
<td>0.168</td>
<td>1.5×10^{-2}</td>
<td>S6</td>
</tr>
<tr>
<td>Ph(DPPT$_2$)$_2$</td>
<td>TG/BC</td>
<td>---</td>
<td>9.0×10^{-2}</td>
<td>S7</td>
</tr>
<tr>
<td>DPPTT-H</td>
<td>BG/TC</td>
<td>---</td>
<td>0.20</td>
<td>S8</td>
</tr>
</tbody>
</table>
Reference

S2 B. Lim, H. Sun and Y.-Y. Noh, Dyes Pigm., 2017, 142, 17.

