Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

A single fluorescent chemosensor for multiple targets: the sequential detection of Al³⁺ and pyrophosphate and the selective detection of F⁻ in a near-perfect aqueous solution

Suh Mi Hwang,^a Min Seon Kim, ^a Misun Lee,^b Mi Hee Lim,^{b*} Cheal Kim^{a*}

^{*a*} Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: chealkim@seoultech.ac.kr

^b_Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea. Fax: +82-52-217-5409; Tel: +82-52-217-5422; E-mail: <u>mhlim@unist.ac.kr</u>

Sensor	Limit of detection (Al ³⁺ /PPi, µM)	Binding constant (Al ³⁺ /PPi, M ⁻¹)	Percent of water in solution (%)	Method of detection Al ³⁺ /PPi	Reference
	No data / 7.3	1.66 x 10 ⁴ / No data	100	Fluorescence, Colorimetric	[1]
	0.86 / 2.19	8.00 x 10 ⁴ / No data	30	Colorimetric	[2]
	7.55 / 3.34	$5.29 \pm 1.11 \ge 10^4 / 1.34$ $\pm 0.81 \ge 10^3$	20	Fluorescence, Colorimetric	[3]
	0.03 / 0.27	5.96 x 10 ³ / No data	99	Fluorescence	[4]
	9.24 / 20.5	2.30 x 10 ² / 3.70 x 10 ²	99	Fluorescence	[5]
	5.6 x 10 ⁻⁴ / 0.014	6.95 x 10 ² / No data	100	Fluorescence	[6]
	0.185 / 1.20	4.30 x 10 ⁵ /4.80 x 10 ⁶	99	Fluorescence	This work

Table S1. Examples of chemosensors for sequential detection of Al³⁺ and PPi.

References

- 1 C. R. Lohani, J. M. Kim, S. Y. Chung, J. Y. Yoon and K. H. Lee, *Analyst*, 2010, **135**, 2079–2084.
- 2 S. Goswami, S. Paul and A. Manna, *RSC adv.*, 2013, **3**, 10639–10643.
- 3 R. Alam, T. Mistri, R. Bhowmick, A. Katarkar, K. Chaudhuri and M. Ali, *RSC Adv.*, 2015, 5,

53940-53948.

- 4 C. Liang, W. Bu, C. Li, G. Men, M. Deng, Y. Jiangyao, H. Sun and S. Jiang, *Dalton Trans.*, 2015, 44, 11352-11359.
- 5 T. G. Jo, K. H. Bok, J. Y. Han, M. H. Lim and C. Kim, *Dyes Pigm.*, 2017, **139**, 136-147.
- 6 S. K. Asthana, A. Kumar, Neeraj, Shweta, S. K. Hira, P. P. Manna and K. K. Upadhyay, *Inorg. Chem.*, 2017, **56**, 3315-3323.

Figure S1. UV-vis titration of 1 (10 μ M) with Al³⁺ (up to 4.0 equiv) in bis-tris buffer solution at room temperature.

Figure S2. Job plot for the binding of **1** with Al³⁺. Absorption at 413 nm was plotted as a function of the molar ratio $[Al^{3+}] / ([1] + [Al^{3+}])$. The total concentration of Al³⁺ with **1** was 50 µM.

Figure S3. Positive-ion ESI-mass spectrum of 1 (100 μ M) upon addition of 1 equiv of Al³⁺.

Figure S4. ¹H NMR titrations of **1** with Al³⁺.

Figure S5. Absorption intensity (at 400 nm) of **1** (10 μ M) after addition of increasing different concentration of Al³⁺ ions. The black line is the non-linear fitting curve between **1** and Al³⁺. Association constant (*K*) of **1** with Al³⁺ was calculated by the non-linear least square curve fitting.

Figure S6. Determination of the limit of detection based on change in the ratio (fluorescence intensity at 452 nm) of **1** with Al^{3+} . [**1**] = 1 μ M and [Al^{3+}] = 0-4.5 μ M

Figure S7. Competitive selectivity of **1** (1 μ M) toward Al³⁺ (24 equiv) in the presence of other metal ions (24 equiv) in bis-tris buffer solution.

Figure S8. Fluorescence intensities (at 452 nm) of 1 and -Al³⁺ ([1] = 1 μ M) after addition of 24 equiv of Al³⁺ at various ranges of pH in bis-tris buffer solution.

Figure S9. UV-vis titration of -Al³⁺ complex (10 μ M) with PPi (up to 18 equiv) in bis-tris buffer solution at room temperature.

Figure S10. Job plot for the binding of 1-Al³⁺ complex with PPi. Absorbtion at 370 nm was plotted as a function of the molar ratio ([1-Al³⁺]) / ([1-Al³⁺] + [PPi]). The total concentration of 1-Al³⁺ complex with PPi was 50 μ M.

Figure S11. Positive-ion ESI-mass spectrum of 1-Al³⁺ complex (100 μ M) upon addition of 1 equiv of PPi.

Figure S12. Absorption intensity (at 400 nm) of -Al³⁺ (10 μ M) after addition of increasing different concentration of PPi. The black line is the non-linear fitting curve between 1-Al³⁺ and PPi. Association constant (*K*) of 1-Al³⁺ with PPi was calculated by the non-linear least square curve fitting.

Figure S13. Determination of the limit of detection based on change in the ratio (fluorescence intensity at 452 nm) of -Al³⁺ complex (1 μ M) with PPi.

Figure S14. Fluorescence intensities (at 452 nm) of $1-Al^{3+}$ and $1-Al^{3+} + PPi$ ([$1-Al^{3+}$] = 1 μ M) after addition of 24 equiv of PPi at various ranges of pH in bis-tris buffer solution.

Figure S15. UV-vis titration of **1** (10 μ M) with F⁻ (up to 50 equiv) in bis-tris buffer solution at room temperature.

Figure S16. Job plot for the binding of **1** with F⁻. Absorbtion at 420 nm was plotted as a function of the molar ratio $[F^-] / ([1] + [F^-])$. The total concentration of **1** with F⁻ was 200 μ M.

Figure S17. Negative-ion ESI-mass spectrum of 1 (100 μ M) upon addition of 2 equiv of F⁻.

Figure S18. ¹H NMR titrations of 1 with F⁻.

Figure S19. Determination of the limit of detection based on change in the ratio (fluorescence intensity at 458 nm) of **1** (10 μ M) with F⁻. [**1**] = 10 μ M and [F⁻] = 0-9 μ M

Figure S20. Li's plot (Intensity at 458 nm) of **1**, assuming 1:1 stoichiometry for association between **1** and F^- .

Figure S21. Fluorescence intensities (at 458 nm) of 1 and 1-F⁻ ([1] = 10 μ M) after addition of 50 equiv of F⁻ at various ranges of pH in bis-tris buffer solution.

(a)

Fig. S22. (a) The theoretical excitation energies and the experimental UV-vis spectrum of **1**. (b) The major electronic transition energies and molecular orbital contributions for **1** (H = HOMO and L = LUMO).

Excited State 1	Wavelength	percent (%)	Character	Oscillator strength
H 🛛 L	428.55	99%	ICT	1.3816

Fig. S23. (a) The theoretical excitation energies and the experimental UV-vis spectrum of $1-Al^{3+}$. (b) The major electronic transition energies and molecular orbital contributions for $1-Al^{3+}$ (H = HOMO and L = LUMO).

Fig. S24. Molecular orbital diagrams and the excitation energies of 1 and 1-Al³⁺.

Excited State 1	Wavelength	percent (%)	Character	Oscillator strength
H 🛛 L	409.33 nm	98%	ICT	0.6819

Fig. S25. (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1-F⁻. (b) The major electronic transition energies and molecular orbital contributions for 1-F⁻(H = HOMO and L = LUMO).

Fig. S26. Molecular orbital diagrams and the excitation energies of 1 and 1-F⁻.