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Table S1. Examples of chemosensors for sequential detection of Al3+ and PPi. 

Sensor Limit of detection 
(Al3+/PPi, μM)

Binding constant (Al3+/PPi, M-1) Percent of water in 
solution (%)

Method of detection 
Al3+/PPi

Reference

ON N

N

O

NH2

No data / 7.3 1.66 x 104  / No data 100 Fluorescence, 
Colorimetric

[1]

ON
H NH

N

O

N

N
O

0.86 / 2.19 8.00 x 104 / No data 30 Colorimetric [2]

OHN N

NH

O2N

HN

NO2

7.55 / 3.34 5.29 ± 1.11 x 104 / 1.34 
± 0.81 x 103

20 Fluorescence, 
Colorimetric

[3]

OH

N

OH
0.03 / 0.27 5.96 x 103 / No data 99 Fluorescence [4]

N

H
N

O
NH2

N

N

HO

9.24 / 20.5 2.30 x 102 / 3.70 x 102 99 Fluorescence [5]

N
H

O O

N
NH

O

N

5.6 x 10-4 / 
0.014

6.95 x 102 / No data 100 Fluorescence [6]

OO

NHN

OH

N

0.185 / 1.20 4.30 x 105 / 4.80 x 106 99 Fluorescence
This 
work
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Figure S1. UV-vis titration of 1 (10 µM) with Al3+ (up to 4.0 equiv) in bis-tris buffer solution at room 

temperature.
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Figure S2. Job plot for the binding of 1 with Al3+. Absorption at 413 nm was plotted as a function of 

the molar ratio [Al3+] / ([1] + [Al3+]). The total concentration of Al3+ with 1 was 50 µM.
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 Figure S3. Positive-ion ESI-mass spectrum of 1 (100 μM) upon addition of 1 equiv of Al3+.
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Figure S4. 1H NMR titrations of 1 with Al3+.
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Equation Ao +(Amax/2-Ao/2)*((1+x+100000/K)-sqrt((1+x+1
00000/K)^2-4*x))

Adj. R-Square 0.99743 Value Standard Error
Ao 0.25494 0.00272

Amax 0.44004 0.00342
K 433063.20826 63563.20904

K = 4.3 x 105 
(R2 = 0.997)

Figure S5. Absorption intensity (at 400 nm) of 1 (10 μM) after addition of increasing different 

concentration of Al3+ ions. The black line is the non-linear fitting curve between 1 and Al3+. 

Association constant (K) of 1 with Al3+ was calculated by the non-linear least square curve fitting.
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Figure S6. Determination of the limit of detection based on change in the ratio (fluorescence intensity 

at 452 nm) of 1 with Al3+. [1] = 1 μM and [Al3+] = 0-4.5 μM
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Figure S7. Competitive selectivity of 1 (1 μM) toward Al3+ (24 equiv) in the presence of other metal 

ions (24 equiv) in bis-tris buffer solution.
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Figure S8. Fluorescence intensities (at 452 nm) of 1 and 1-Al3+ ([1] = 1 μM) after addition of 24 

equiv of Al3+ at various ranges of pH in bis-tris buffer solution.
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Figure S9. UV-vis titration of 1-Al3+ complex (10 µM) with PPi (up to 18 equiv) in bis-tris buffer 

solution at room temperature.
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Figure S10. Job plot for the binding of 1-Al3+ complex with PPi. Absorbtion at 370 nm was plotted 

as a function of the molar ratio ([1-Al3+]) / ([1-Al3+] + [PPi]). The total concentration of 1-Al3+ 

complex with PPi was 50 µM.
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Figure S11. Positive-ion ESI-mass spectrum of 1-Al3+ complex (100 μM) upon addition of 1 equiv 

of PPi.
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Figure S12. Absorption intensity (at 400 nm) of 1-Al3+ (10 μM) after addition of increasing different 

concentration of PPi. The black line is the non-linear fitting curve between 1-Al3+ and PPi. 

Association constant (K) of 1-Al3+ with PPi was calculated by the non-linear least square curve fitting.
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Figure S13. Determination of the limit of detection based on change in the ratio (fluorescence 
intensity at 452 nm) of 1-Al3+ complex (1 μM) with PPi.
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Figure S14. Fluorescence intensities (at 452 nm) of 1-Al3+ and 1-Al3+ + PPi ([1-Al3+] = 1 μM) after 

addition of 24 equiv of PPi at various ranges of pH in bis-tris buffer solution.
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Figure S15. UV-vis titration of 1 (10 µM) with F- (up to 50 equiv) in bis-tris buffer solution at room 

temperature. 
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Figure S16. Job plot for the binding of 1 with F-. Absorbtion at 420 nm was plotted as a function of 

the molar ratio [F-] / ( [1] + [F-] ). The total concentration of 1 with F- was 200 µM.
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Figure S17. Negative-ion ESI-mass spectrum of 1 (100 μM) upon addition of 2 equiv of F-.
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Figure S18. 1H NMR titrations of 1 with F-.
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Figure S19. Determination of the limit of detection based on change in the ratio (fluorescence 

intensity at 458 nm) of 1 (10 μM) with F-. [1] = 10 μM and [F-] = 0-9 μM
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Figure S20. Li’s plot (Intensity at 458 nm) of 1, assuming 1:1 stoichiometry for association between 

1 and F-.
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Figure S21. Fluorescence intensities (at 458 nm) of 1 and 1-F- ([1] = 10 μM) after addition of 50 

equiv of F- at various ranges of pH in bis-tris buffer solution.
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Fig. S22. (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1. (b) The 

major electronic transition energies and molecular orbital contributions for 1 (H = HOMO and L = 

LUMO).
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Fig. S23. (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1-Al3+. (b) 

The major electronic transition energies and molecular orbital contributions for 1-Al3+ (H = HOMO 

and L = LUMO).
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Fig. S24. Molecular orbital diagrams and the excitation energies of 1 and 1-Al3+.
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Fig. S25. (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1-F-. (b) 

The major electronic transition energies and molecular orbital contributions for 1-F- (H = HOMO and 

L = LUMO).
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Fig. S26. Molecular orbital diagrams and the excitation energies of 1 and 1-F-.


