Supporting Information

Organic salt-derived nitrogen-rich, hierarchical porous carbon for ultrafast supercapacitors

Longfeng Hu, a Li Ma, a Qizhen Zhu, a Lanyong Yu, a Qi Wu, a Chen Hu, b* Ning Qiao a
and Bin Xu a*

a State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China.

b China Electric Power Research Institute, Beijing 100192, China

*Corresponding authors. E-mail: binxumail@163.com, huchen@epri.sgcc.com.cn.
Figure S1 DFT pore size distribution of NHC700 and NHC800.

Figure S2 SEM images of the NHC600 (a) and NHC800 (b).
Figure S3 N1s spectra of the calcium disodium EDTA-derived carbons, (a) NHC600, (b) NHC700, (c) NHC750, (d) NHC800 and (e) NHC850.
Figure S4 CV profiles at a scan rate of 5 mV s$^{-1}$ (a, b), and charge-discharge curves at a current density of 1 A.g$^{-1}$ (c, d) of NHC600 (a, c) and NHC700 (b, d).
Figure S5 CV curves of the calcium disodium EDTA-derived carbons at enhanced scan rates in 6 mol L\(^{-1}\) KOH aqueous electrolyte, (a) NHC600, (b) NHC700, (c) NHC750, (d) NHC800 and (e) NHC800.
Figure S6 Electrochemical capacitive performances of the calcium disodium EDTA-derived carbons in 1 mol L$^{-1}$ H$_2$SO$_4$ aqueous electrolyte in a three-electrode system with saturated Ag/AgCl electrode as reference electrode and overcapacitive activated carbon was used as a counter electrode. (a) CV profiles at a scan rate of 5 mV s$^{-1}$; (b) The specific capacitances of the NHCs as a function of current density; (c) CV profiles of NHC850 at various scan rates; (d) The specific capacitances of NHC850 at different scan rates.