Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information

Conformational studies of Ant-Pro motif-incorporated cyclic peptides: Gramicidin S and Avellanin

Amol S. Kotmale,^{*a*, *b*} Ekta Sangtani, ^{*c*} Rajesh G. Gonnade,^{*c*} Dhiman Sarkar,^{*d*} Sachin Burade,^{*e*} Pattuparambil R. Rajamohanan,^{**b*} and Gangadhar J. Sanjayan^{**a*}

^aOrganic Chemistry Division, ^bCentral NMR Facility, ^cCentre for Materials Characterization, ^dCombichem-Bioresource Center, Organic Chemistry Division, CSIR-National Chemical Laboratory, (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India, ^eDepartment of Chemistry, Savitribai Phule Pune University, Pune, 411 007, India.

Contents	S1
General methods	S2
Synthetic scheme 1	S3
Experimental procedures	S4-S25
Synthetic scheme 2	S26
Experimental procedures	S27-S39
Variable temperature studies of compounds 1 and 2	S40-S42
2D NMR of compounds 1 and 2	S44-S50
Molecular dynamic studies of compounds 1 and 2	S51- S53
X-ray structure and data of compounds 6 and 12	S54-S69
CD spectra of protected and deprotected GS mimic 1:	S69
Details of antibacterial studies	S70
References	S70

General Methods

Unless otherwise stated, all the chemicals and reagents were obtained commercially. Dry solvents were prepared by the standard procedures. Analytical Thin Layer Chromatography was done on precoated silica gel plates (Kieselgel 60F₂₅₄, Merck). Column chromatographic purifications were done with 230-400 and 100-200 mesh silica gel. NMR spectra were recorded in CDCl₃ or DMSO-d₆ on AV 400 MHz, AV 500 MHz and AV 700 MHz Bruker NMR spectrometers. All chemical shifts are reported in δ ppm downfield to TMS and peak multiplicities are referred to as singlet (s), doublet (d), quartet (q), broad singlet (bs), and multiplet (m). The variable temperature experiment was done in DMSO- d_6 . Elemental analyses were performed on an Elmentar-Vario-EL (Heraeus Company Ltd., Germany). IR spectra were recorded in CHCl₃ using Shimadzu FTIR-8400 spectrophotometer. Melting points were determined on a Buchi Melting Point B-540. HRMS (ESI) data were recorded on a Thermo Scientific Q-Exactive, Accela 1250 pump. Circular dichroism (CD) was performed using a cell of 2 mm path length. Spectra were recorded as an accumulation of 3 scans using a scan speed of 100nm/min, with resolution of 1.0 nm, band-width 1.0 nm and a response of 1 sec. Spectra were smoothened (5) and plotted using Origin Pro 6.0 software. Instrument used JASCO 2000 CD spectrometer.

Synthetic Scheme 1:

Reagents and conditions: (i) EDC.HCl, DIEA, HOBt, DCM, RT, 8 h; (ii) a) TFA:DCM; b)Boc-Ant-OH, HBTU, DIEA, ACN, RT, 6 h; (iii) a) TFA:DCM; b) Boc-Leu-OH, EDC.HCl, HOBt, DCM, RT, 8 h; (iv) a) TFA:DCM; b) Boc-(Cbz)-Orn-OH, HBTU, DIEA, ACN, RT, 12 h; (v) a) LiOH:H₂O; b) TFA:DCM; (vi) HBTU, DIEA, ACN, RT, 12 h; (vii) a) LiOH : H₂O; b) TFA:DCM; c) HBTU, DCM, RT, 12 h; (viii) H₂, 10 mol% Pd/C, 0.02 M HCl in MeOH, 12 h; (ix) a)TFA:DCM; b) HBTU, DIEA, DCM, RT, 12 h, x) H₂, 10 mol% Pd/C, 0.01 M HCl in MeOH, 12 h.

Compound 5 (Boc-^DPro^LVal-OMe): To a solution of HCl.^LVal-OMe 4 (6.523 g, 34.88

mmol, 1.5 equiv.) in DCM (60 mL) at 0°C, DIEA (12.12 mL, 69.75 mmol, 3 equiv.) was added slowly and the reaction mixture stirred for 5 minutes. Later Boc-^DPro-OH **3** (5g, 23.25 mmol,, 1 equiv.), EDC.HCl (8.88 g, 46.5 mmol, 2 equiv.) & HOBt (catalytic amount) were added sequentially and the reaction

mixture was stirred, at room temperature. After 8 h, the reaction mixture was diluted with DCM and washed sequentially with solutions of KHSO₄, NaHCO₃ and brine. The organic layer dried over Na₂SO₄ and evaporated under vacuum. The crude product was purified by column chromatography (eluent: 20% AcOEt/Pet. ether, R_{f} : 0.3) to afford **5** (6.25 g, 82%) as a white fluffy solid material. Mp: 102-104 °C; $[\alpha]^{25.97}$ _D: 105.39° (c = 0.122, CHCl₃; IR (CHCl₃) ν (cm⁻¹): 3294, 2967, 2358, 1741, 1691, 1658, 1442, 1209, 766; ¹H NMR (400MHz, CDCl₃) δ : 6.51 (bs, 1H), 4.54 (bs, 1H), 4.34 (bs, 1H), 3.72 (s, 3H), 3.60 (m, 1H), 3.44-3.27 (m, 1H), 3.49 (bs, 2H), 2.31 (bs, 1H), 2.26-2.11 (m, 2H), 1.89 (t, J = 6.6 Hz, 2H), 1.48 (s, 9H), 0.97 (d, J = 6.8 Hz, 3H), 0.90 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 172.3, 155.5, 80.5, 61.3, 60.0, 56.9, 52.1, 47.1, 31.2, 28.3, 24.3, 23.6, 19.0, 17.5; HRMS (ESI) C₁₆H₃₀N₂O₅ calculated [M+H]⁺: 329.1998, found 329.2061, C1₆H₂₈N₂NaO₅ calculated [M+Na] + 351.1896, found 351.1880.

General procedure for Boc-deprotection: Boc protected compound was stirred in TFA:DCM (1:1) solution for 30 min at room temperature. After deprotection, solution was evaporated under vacuum, the TFA salt was neutralized by NaHCO₃ solution and compound was extracted with ethyl acetate. The resulting ethyl acetate solution dried over Na₂SO₄ and evaporated under vacuum. The crude product (free amine) was used for next reaction without further purification.

Compound 6 (Boc-Ant ^DPro^LVal-OMe): To a solution of BocAnt-OH (2.495 g, 10.52

mmol, 1.2 equiv.) and DIEA (4.57 mL, 26.31 mmol, 3 equiv.) in 30mL of ACN, the amine (H-ProVal-OMe) (2 g, 8.77 mmol, 1 equiv.), HBTU (6.653 g, 17.54 mmol, 2 equiv.) and catalytic amount of HOBt were added sequentially at 0 °C. This reaction mixture was stirred at room temperature. After 6 h, ACN was removed under reduced pressure and the

compound was taken into ethyl acetate. The combined organic layers were washed sequentially with saturated solutions of KHSO₄, NaHCO₃ and brine. Organic layer was then dried over Na₂SO₄ and was evaporated under vacuum. The crude product was purified by column chromatography (eluent 40% AcOEt/pet. Ether, R_{f} : 0.3) to furnish compound **6** (3.51

g, 90%) as a white solid. Mp: 144-146°C; $[\alpha]^{25.97}_{D}$:156.08° (c = 0.11, CHCl₃); IR (CHCl₃) v (cm⁻¹) 3315, 2971, 2358, 1731, 1676, 1525, 1160, 761; ¹H NMR (400MHz, CDCl₃) δ ppm 8.23 (bs, 3H), 8.10 (d, J = 8.3 Hz, 1H), 7.40 (m, 1H), 7.37 - 7.28 (m, 2H), 7.05 (t, J = 7.5 Hz, 1H), 4.90 (d, J = 5.6 Hz, 1H), 4.66 - 4.45 (m, 1H), 3.72 (s, 3H), 3.60 - 3.39 (m, 2H), 2.48 - 2.32 (m, 1H), 2.29 - 2.18 (m, 1H), 2.18 - 2.08 (m, 1H), 2.04 - 1.93 (m, 1H), 1.91 - 1.78 (m, 1H), 1.50 (s, 9H), 0.98 (s, 3H), 0.91 (d, J = 6.8 Hz, 3H) ¹³C NMR (125MHz , CDCl₃) $\delta = 172.3$, 171.1, 170.2, 153.1, 137.0, 131.0, 127.4, 124.4, 122.3, 121.1, 80.4, 59.5, 57.3, 50.3, 38.6, 30.9, 28.3, 27.4, 25.3, 19.1, 17.6; HRMS (ESI) C₂₃H₃₄N₃O₆ calculated [M+H]⁺: 448.2369, found 448.2431, C₂₃H₃₃N₃NaO₆ calculated [M+Na]⁺470.2267, found 470.2249.

D-TRI_151202142249 #110 RT: 0.49 AV: 1 NL: 3.72E9 T: FTMS + p ESI Full ms [100.00-1500.00]

Compound 7 (Boc ^LLeuAnt ^DPro^LVal-OMe):

To a solution of Boc-^LLeu-OH (1.33 g, 5.76 mmol, 2 equiv.) in 20 mL DCM, EDC.HCl(1.1 g, 5.763 mmol, 2 equiv.) & catalytic amount of HOBt were added and reaction mixture was stirred at 0 °C for 30 min., the solution of amine (H-Ant^DPro^LVal-OMe) (1 g, 2.88 mmol, 1 equiv.) in 10mL DCM was added slowly to the reaction mixture at 0 °C. This

reaction mixture was then stirred for 4 h at room temperature. After completion of reaction, solution was diluted with DCM. The organic layer was washed sequentially with saturated solutions of KHSO₄, NaHCO₃ and brine. Organic layer was then dried over Na₂SO₄ and was evaporated under vacuum. The crude product was purified by column chromatography (eluent 50% AcOEt/pet. Ether, R_f: 0.3) afforded 7 (1.3 g, 81%) as a white fluffy solid. Mp: 82-84°C; $[\alpha]^{25.97}$ D: 84.44° (*c* = 0.046, CHCl₃); IR (CHCl₃) v (cm⁻¹) 3343, 3020, 2970, 2357, 1674, 1590, 1217, 764; ¹H NMR (400MHz, CDCl₃) δ ppm 9.22 (bs, 1H), 8.30 (d, *J* = 6.6 Hz, 1H), 7.41 (t, *J* = 7.3 Hz 1H), 7.34 (d., *J* = 7.3 Hz, 1H), 7.23 (bs, 1H), 7.13 (t, *J* = 7.3 Hz, 1H), 5.56 (d, *J* = 7.1 Hz, 1H), 4.83 (m., 1H), 4.60 (m, 1H), 4.42 - 4.25 (m, 1H), 3.75 (s, 3H), 3.49 (m, 1H), 3.40 (m, 1H), 2.30 (m, 3H), 2.01 (m, 1H), 1.94 - 1.69 (m, 3H), 1.67 - 1.56 (m, 1H), 1.43 (s, 9H), 1.00 - 0.94 (m, 9H), 0.92 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ

ppm 172.3, 172.1, 171.6, 169.2, 155.3, 135.2, 130.6, 126.9, 125.9, 123.7, 79.4, 59.6, 57.3, 54.4, 52.2, 49.6, 41.6, 31.1, 28.2, 25.2, 24.8, 23.0, 21.6, 21.6, 19.1, 17.5; HRMS (ESI) $C_{29}H_{45}N_4O_7$ calculated [M+H]⁺: 561.3210, found 560.3273, $C_{29}H_{44}N_4NaO_7$ calculated [M+Na]⁺ 583.3108, found 583.3091.

D-TETRA_151202142558 #115 RT: 0.51 AV: 1 NL: 1.40E9 T: FTMS + p ESI Full ms [100.00-1500.00]

Compound 8 (Boc-(z)^LOrni^LLeuAnt^DProVal-OMe):

To a stirred solution of tetra-amine (H-^LLeuAnt^DProVal-OMe) (1 g, 2.17 mmol, 1equiv.), and DIEA (1.33 mL, 4.34 mmol, 3 equiv.) in 20mL ACN, Boc-(z)^LOrn-OH (0.96 g, 2.60 mmol, 1.2 equiv.) HBTU (1.643 g, 4.34 mmol, 2 equiv.) & catalytic amount of HOBt were added sequentially at 0 °C. This reaction mixture was then stirred, at room temperature. After 8 h, ACN was removed under reduced pressure and then the mixture was taken into ethyl acetate. The organic layer was washed sequentially with saturated solutions of KHSO₄, NaHCO₃ and brine. The organic layer was dried over Na₂SO₄ and was evaporated under vacuum. The crude

product was purified by column chromatography (eluent 60% AcOEt/pet. Ether, Rf: 0.3) to furnish **9** (1.33 g, 76%) as a white fluffy solid. Mp: 90-92°C; $[\alpha]^{25.60}_{\text{D}}$: 52.59° (*c* = 0.043, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3422, 3331, 3020, 2970, 2405, 2357, 1679, 1217, 764; ¹H NMR (400MHz, CDCl₃) δ ppm 9.57 (bs, 1H), 8.20 (d, *J* = 7.9 Hz, 1H), 7.43 - 7.28 (m, 8H), 7.17 - 7.07 (m, 2H), 6.93 (d, *J* = 6.4 Hz, 1H), 5.40 (bs, 1H), 5.20 (bs, 1H), 5.16 - 5.01 (dd,

11.90 Hz, 2H), 4.78 (m., 1H), 4.65 (m, 2H), 4.33 (m., 1H), 3.75 (s, 3H), 3.58 - 3.38 (m, 2H), 3.37 - 3.28 (m, 1 H), 3.16 (m., 1 H), 2.31 - 2.15 (m, 3 H), 2.11 (m, 1 H), 2.02 - 1.67 (m, 3 H), 1.67 - 1.55 (m, 3H), 1.44 (s, 9H), 0.95 (m, 9H), 0.89 (d, J = 6.7 Hz, 3H); ¹³C NMR (125MHz, CDCl₃) δ ppm 172.6, 172.1, 171.5, 171.1, 169.6, 156.9, 155.7, 136.6, 135.6, 130.8, 128.4, 128.0, 127.1, 125.6, 123.8, 122.6, 79.8, 66.6, 59.8, 57.1, 53.3, 52.6, 52.3, 50.2, 41.3, 39.9, 31.0, 29.8, 29.6, 28.3, 26.0, 25.2, 24.7, 23.1, 21.6, 19.0, 17.5; HRMS (ESI) C₄₂H₆₀N₆O₁₀ calculated [M+H]⁺: 809.4371, found 809.4429, C₄₂H₆₀N₆NaO₁₀ calculated [M+Na] ⁺ 831.4269, found 831.4244.

Hydrolysis of 8: To a stirred solution of **8** in MeOH, aq. LiOH:H₂O (2 equiv.) was added and reaction mixture was kept for 8h. After complete consumption of starting material, MeOH was evaporated under vacuum and then mixture was acidified with KHSO₄ solution. The compound was extracted with ethyl acetate and washed with water and brine. The ethyl acetate layer was dried over Na₂SO₄ and evaporated *in vacuo*. The solid, penta-peptide acid (Boc-(z)^LOrni^LLeuAnt^DProVal-OH) **8a**, was used for next reaction without further purification.

Compound 9 Boc-((z)^LOrni^LLeuAnt^DProVal)₂-OMe (Deca-peptide): The deca-peptide 9

9

was synthesized by segment doubling strategy from penta-peptide. To a stirred solution of **8a** (0.41 g, 0.56 mmol, 1 equiv.) and **8b** (0.4 g, 0.56 mmol, 1 equiv.) in 15 mL of ACN, HBTU (0.43 g, 1.16 mmol, 2 equiv.) and DIEA (0.3 mL, 1.6 mmol, 3 equiv.) were added at 0 °C. The reaction mixture was then stirred at room temperature. After 8 h, ACN was removed

under reduced pressure and then the mixture was taken into ethyl acetate. The organic layer

was washed sequentially with saturated solutions of KHSO₄, NaHCO₃ and brine. The organic layer was dried over Na₂SO₄ and was evaporated under vacuum. The crude product was purified by column chromatography (eluent 70% AcOEt/pet. Ether, Rf: 0.3) to furnish 9 (0.57 g, 69%) as a white fluffy solid. mp: 126-128°C; $[\alpha]^{25.64}_{D} = 33.4824^{\circ}$ (c = 0.012, CHCl₃); IR (CHCl₃) v (cm⁻¹) 3297, 3071, 2962, 2357, 1646, 1538, 1252, 1160, 761; ¹H NMR (500 MHz, CDCl₃) δ ppm 9.45 (bs, 1H), 9.21 (bs, 1H), 8.19 (d, J = 6.7 Hz, 1H), 8.13 (d, J = 7.6 Hz., 1H), 7.96 (bs, 1H), 7.46 (t, J = 6.7 Hz, 1H), 7.41 - 7.19 (m, 14H), 7.17 (d, J = 7.0 Hz, 1H), 7.12 - 7.05 (m, 2H), 7.03 (d, J = 7.0 Hz, 1H), 6.96 (d, J = 6.1 Hz, 1H), 6.20 (bs, 1H), 6.00 (bs, 1H), 5.36 (dd, J = 8.54 Hz, 1H), 5.16 - 4.90 (m, 5H), 4.77 (m., 1H), 4.72 - 4.60 (m, 3H), 4.48 (m, 2H), 4.37 (m, 1H), 3.71 (s, 3H), 3.45 (m, 1H), 3.35 (m, 3H), 3.22 (m, 2H), 3.02 (m, 2H), 2.45 (bs, 2H), 2.14 (m, 5H), 2.03 - 1.88 (m, 8H), 1.62 (m, 4H), 1.49-1.46 (m, 5H), 1.43 (S, 9H), 0.97 - 0.84 (m, 24H). ¹³C NMR (101 MHz , CDCl₃) δ ppm 172.9, 172.8, 172.5, 171.9, 171.5, 171.4, 170.0, 168.9, 157.0, 156.6, 156.2, 137.2, 136.9, 135.0, 134.6, 130.2, 129.9, 128.3, 128.2, 128.1, 127.8, 127.7, 127.6, 126.8, 125.4, 124.5, 124.1, 123.7, 121.4, 79.4, 70.5, 66.4, 65.8, 60.3, 59.9, 59.6, 53.9, 52.8, 52.2, 51.8, 51.6, 50.0, 49.1, 42.3, 40.9, 40.5, 40.0, 30.8, 30.2, 29.7, 29.2, 28.3, 27.8, 26.3, 26.2, 25.1, 24.8, 24.7, 23.2, 23.1, 21.9, 21.4, 19.0, 18.9, 18.3, 17.6. HRMS (ESI) C₇₈H₁₀₈N₁₂O₁₇ calculated [M+H]⁺: 1485.7955, found 1485.8007.

Hydrolysis of 9: Following the hydrolysis procedure of **8**, compound **9** was hydrolized to Boc-Deca-OH i.e. Boc-((z)^LOrni^LLeuAnt^DProVal)₂-OH.

Compound 1 (Cbz-1): Cyclo-((z)^LOrn^LLeuAnt^DProVal)-2; The acid i.e. Boc-Deca-OH was

stirred in TFA:DCM (1:1) solution for 30 minutes. Then solution was evaporated under reduced vacuum and it resulted to solid TFA salt of H-Deca-OH. This TFA salt of H-Deca-OH (0.08 g, 0.055 mmol, 1 equiv.) was taken in 10 mL DCM and DIEA (0.04mL, 0.033 mmol, 4 equiv.) was slowly added, this mixture was stirred for 5 min at 0°C. Later HBTU (0.042 g, 0.011, 2 equiv.) and HOBt (catalytic amount) were added into the reaction mixture and reaction was stirred for overnight at room temperature. The reaction mixture was diluted

with DCM and washed with saturated solutions of KHSO₄, NaHCO₃ and brine. The organic layer was dried over Na₂SO₄ and evaporated under vacuum. The crude product was purified

by column chromatography (eluent 2% methanol/DCM, $R_f: 0.3$) to furnish compound **1** (0.037 g, 50%) as a white fluffy solid. Mp: 284-286°C; $[\alpha]^{25.64}_D$: 87.08° (*c* =0.007, CHCl₃); IR (CHCl₃) v (cm⁻¹) 3418, 3022, 2966, 2930, 2869, 2405, 2357, 1641, 1544, 1421, 1216, 765, 670; ¹H NMR (700 MHz, DMSO-d₆) δ ppm: 10.04 (s, 2H), 8.85 (d, *J* = 9.3 Hz, 2H), 8.62 (d, *J* = 9.5 Hz, 2H), 8.44 (d, *J* = 9.5 Hz, 2H), 8.20 (d, *J* = 8.3 Hz, 2H), 7.38 - 7.22 (m, 14H), 7.20 (d, *J* = 7.6 Hz, 2H), 7.12 (m, 2H), 7.10 (t, *J* = 7.6 Hz, 2H), 5.70 (m, 2H), 5.01 (m, 2H), 4.75 - 4.66 (m, 4H), 4.62 (m, 2H), 3.23(m, 2H), 3.17(m, 2H), 2.85 (m, 4H), 2.35 (m, 2H), 1.90-1.80(m, 8H), 1.72 (m, 2H), 1.60-1.45 (m., 5H), 1.44-1.33 (m, 5H), 1.29 (m, 2H), 0.88 (d, *J* = 6.6 Hz, 6H), 0.85 (d, *J* = 6.6 Hz, 6H), 0.80 (d, *J* = 7.3 Hz, 6 H), 0.78 (d, *J* = 7.3 Hz, 6H); ¹³C NMR (175 MHz, DMSO-d₆) δ ppm: 172.5, 172.2, 171.6, 170.0, 167.23, 156.0, 137.2, 134.4, 129.2, 128.3, 128.2, 127.9, 127.6, 125.1, 123.4, 120.5, 65.0, 59.3, 58.6, 50.6, 50.3, 48.6, 42.5, 31.3, 31.0, 30.8, 30.2, 29.0, 25.7, 24.4, 24.1, 23.3, 21.5, 18.41; HRMS (ESI) C₇₂H₉₆N₁₂O₁₄ calculated [M+H]⁺ 1353.7169 found 1353.7225, C₇₂H₉₆N₁₂NaO₁₄ calculated [M+Na] ⁺ 1375.7067, found 1375.7036.

Procedure for Cbz deprotection and HCl salt formation of 1: The Cbz protecting groups in **Cbz-1** were successfully removed by hydrogenolysis in the presence of H₂, 10% Pd/C in a 0.02 M HCl/MeOH solution. After 12 h, reaction mixture was filtered through celite pad and then filtrate was evaporated under vacuum which resulted to a colorless solid; HRMS (ESI) $C_{72}H_{96}N_{12}O_{14}$ calculated [M]⁺ 1084.6433 found 1084.6481, $C_{72}H_{97}N_{12}O_{14}$ calculated [M+H]⁺ 1085.6433, found 1085.6553.

Compound 2 Cyclo-((z)^LOrni^LLeuAnt^DProVal); Cyclic compound 2 was prepared using

same synthetic procedure of **1**, which was purified by column chromatography (eluent 60% AcOEt/pet. Ether, R_{f} : 0.3) to furnish compound **2** (60%) as a white fluffy solid. Mp: 138-140°C; $[\alpha]^{25.64}_{D} - 162.6^{\circ}$ (*c* =0.01, CHCl₃); IR (CHCl₃) v (cm⁻¹) 3331, 2959, 2874, 2357, 1668, 1591, 1532, 1421, 763; ¹H NMR (700 MHz, DMSO-d₆) δ ppm 9.59 (s, 1H), 8.52 (d, *J* = 7.9 Hz, 1H),

8.43 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 9.5 Hz, 1H), 7.58 (dd, J = 1.4, 7.6 Hz, 1H), 7.47 (dt, J = 1.1, 8.6 Hz, 1H), 7.36 - 7.27 (m, 3H), 7.26 (t, J = 5.7 Hz, 1H), 7.14 (dt, J = 1.1, 7.5 Hz, 1H), 4.91 (m, 2H), 4.67 (m, 1H), 4.46 (m, 2H), 4.34 (dd, J = 3.7 Hz, 8.4 Hz, 1H), 3.79 (m, 2H), 3.06 (m, 2H), 2.48 (m, 1H), 2.30 - 2.15 (m, 2H), 2.10 - 1.98 (m, 2H), 1.95 (m, 1H), 1.90 - 1.85 (m, 2H), 1.75 (m, 1H), 1.56 (m, 2H), 1.47 (m, 1H), 0.94 (d, J = 7.1 Hz, 3H), 0.92 (d, J = 7.1 Hz, 3H), 0.87 (d, J = 6.7 Hz, 3H), 0.86 (d, J = 6.7 Hz, 3H); ¹³C NMR (175MHz, DMSO-d₆) δ ppm 173.5, 170.8, 170.5, 169.8, 167.6, 156.1, 137.3, 136.9, 131.3, 128.3, 127.8, 127.7, 127.7, 122.5, 122.4, 119.1, 65.1, 59.9, 58.0, 54.1, 51.3, 50.7, 36.2, 29.4, 29.0, 27.8, 27.4, 25.9, 24.9, 23.3, 21.3, 19.2, 16.9; HRMS (ESI) C₃₆H₄₈N₆O₇ calculated [M+H]⁺ 676.3584, found 676.3647, C₃₆H₄₈N₆NaO₇ calculated [M+Na]⁺ 699.3482, found 699.3450.

S24

Cbz deprotection procedure and HCl salt formation of 2: Following the same procedure Cbz deprotection of **1**, compound **2** was deprotected and HCl salt of **2** was formed as a colorless solid; HRMS (ESI) $C_{28}H_{42}N_6O_5$ calculated [M]⁺ 542.3217 found 542.2968, $C_{28}H_{43}N_6O_5$ calculated [M+H]⁺ 542.3217, found 542.3283.

Scheme 2:

Reagents and Conditions: (i) EDC.HCl, DIEA, HOBt, DCM, RT, 8 h; (ii) a) TFA:DCM; b) Boc-Ant-OH, HBTU, DIEA, ACN, RT, 6h; (iii) a) TFA:DCM; b) Boc-Leu-OH, EDC.HCl, HOBt, DCM, RT, 8h; (iv) a) TFA:DCM; b) Boc-(Cbz)-Orn-OH, HBTU, DIEA, ACN, RT,

12h; (va) LiOH:H₂O; (vb) TFA:DCM; (vi) a) TFA:DCM; b) HBTU, DIEA, ACN, RT, 12h. (vii) HBTU, DIEA, ACN, RT, 12h, (vii) a) LiOH:H₂O b) TFA:DCM; b) HBTU, DIEA, ACN, RT, 12h.

Compound 11 (Boc-LProLVal-OMe): Following the same procedure for synthesis of 5,

compound **11** was synthesized. Purification was done by column chromatography (eluent 20% AcOEt/Pet. Ether, R_f : 0.3) afforded **11** (6.4 g, 85%) as a white fluffy solid material; Mp: 66-68°C [α]^{25.97}_D: -85.09° (c = 0.09, CHCl₃; IR (CHCl₃) v (cm⁻¹): 3324, 2970, 2884, 2357, 1743, 1689, 1534, 1398, 1166, 761; ¹H NMR

(700 MHz, CDCl₃) δ ppm 7.49 (bs, rota. NH), 6.53 (bs, rota. NH), 4.60 (m, 1 H), 4.37 (m, 1 H), 3.71 (s, 3H), 3.52 - 3.24 (m, 2H), 2.36 (bs, rota. H), 2.14 (bs, rota. 2H), 2.02 - 1.75 (m, 3H), 1.46 (bs, 9H), 0.90 (d, J = 6.7 Hz, 3H), 0.87 (d, J = 6.4 Hz, 3H); ¹³C NMR (175 MHz, CDCl₃) δ ppm 172.5 (rota), 172.0, 172.1 (rota), 171.8, 155.8, 154.6 (rota), 80.8 (rota), 80.3, 61.2 (rota), 59.6, 57.2, 56.7 (rota), 52.0, 46.9 (rota),31.4 (rota), 31.2, 28.3, 27.5 (rota), 24.6, 23.6 (rota), 19.0, 17.6 (rota), 17.5. HRMS (ESI) C₁₆H₃₀N₂O₅ calculated [M+H]⁺: 329.1998, found 329.2062, C₁₆H₂₈N₂NaO₅ calculated [M+Na]⁺ 351.1896, found 351.1881.

L-DI_151202144813 #105 RT: 0.46 AV: 1 NL: 3.30E9 T: FTMS + p ESI Full ms [100.00-1500.00]

Compound 12 (Boc-Ant LProLVal-OMe): Following the same synthetic procedure of 6,

compound **12** was synthesized and purification was done by column chromatography (eluent 15-20% AcOEt/Pet. Ether, R_f: 0.3) afforded **12** (3.5 g, 90%) as a white fluffy solid material; Mp: 110-112°C [α]^{25.95}_D: -106.1° (*c* = 0.03, CHCl₃; IR (CHCl₃) *v* (cm⁻¹): 3331, 2971, 2888, 2357, 1820, 1728, 1675, 1623, 1595, 1160, 779; ¹H NMR (700 MHz, CDCl₃) δ ppm: 8.32 (bs, 1H), 8.16 (d, *J*

= 7.7 Hz, 1H), 7.38 (t, J = 7.7 Hz, 1H), 7.29 (d, J = 7.5 Hz, 1H), 7.08 (d, J = 8.4 Hz, 1H), 7.01 (t, J = 7.3 Hz, 1 H), 4.80 (t, J = 6.6 Hz, 1 H), 4.55 (dd, J = 5.2, 7.7 Hz, 1 H), 3.75 (s, 3 H), 3.56 (m, 1H), 3.51 (m, 1H), 2.44 (m, 1H), 2.20 (m, 1H), 2.17 (m, 1H), 2.04 (m, 1H), 1.90 (m, 1H), 1.51 (s, 9H), 0.95 (d, J = 6.7 Hz, 3H), 0.91 (d, J = 6.7 Hz, 3H); ¹³C NMR (175 MHz, CDCl₃) δ ppm 172.3, 171.0, 169.9, 153.0, 137.3, 131.1, 127.4, 123.6, 121.8, 120.5, 80.4, 59.7, 57.4, 52.1, 50.6, 31.2, 28.3, 27.6, 25.4, 19.0, 17.7; HRMS (ESI) C₂₃H₃₃N₃O₆ calculated [M+H]⁺: 448.2369, found 448.2433, C₂₃H₃₃N₃NaO₆ calculated [M+Na] ⁺ 470.2267, found 470.2252.

Compound 13 (Boc ^LLeuAnt ^LPro^LVal-OMe): Following the same synthetic procedure of

7, compound **13** was synthesized. The crude product was purified by column chromatography (eluent 50% AcOEt/pet. Ether, R_f: 0.3) afforded **7** (1.03 g, 80%) as a white fluffy solid. Mp: 83-85°C; [α]^{25.87}_D:-84.10° (c = 0.035, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3318, 2966, 2357, 1670, 1625, 1535, 1455, 1166, 760; ¹H NMR (700 MHz, CDCl₃) δ ppm: 9.35

(bs, 1H), 8.24 (d, J = 7.1 Hz, 1H), 7.40 (t, J = 7.9 Hz, 1H), 7.30 (d, J = 7.3 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 6.65 (d, J = 4.5 Hz, 1H), 5.41 (bs, 1H), 4.67 (m, 2H), 4.47 (bs, 1H), 3.76 (s, 3H), 3.50 (m, 1H), 3.32 (m, 1H), 2.34 (m, 3H), 2.01 (m, 1H), 1.78 (m, 1H), 1.73 (m, 2H), 1.62 (m, 1H), 1.43 (s, 9H), 1.00 (d, J = 6.9 Hz, 3H), 0.97 (dd, J = 5.8 Hz, 6H), 0.94 (d, J = 6.9 Hz, 3H); ¹³C NMR (175MHz , CDCl₃) $\delta = 172.5$, 172.4, 171.6, 168.6, 155.6, 135.0, 130.6, 126.7, 124.1, 122.5, 79.5, 60.4, 57.5, 53.9, 52.2, 49.2, 41.9, 31.4, 29.0, 28.3, 25.3, 24.9, 23.1, 21.9, 19.0, 17.7; HRMS (ESI) C₂₉H₄₅N₄O₇ calculated [M+H]⁺: 561.3210, found 561.3271, C₂₉H₄₄N₄NaO₇ calculated [M+Na]⁺ 583.3108, found 583.3088.

Compound 14 Boc-(z)^L**Orni**^L**LeuAnt**^L**ProVal-OMe: (Penta-peptide):** Following the same synthetic procedure of **8**, compound **14** was synthesized. The crude product was purified by

column chromatography (eluent 60% AcOEt/Pet. Ether, R_f: 0.3) afforded **14** (0.71g, 81%) as a white fluffy hygroscopic solid. Mp: 74-78°C; $[\alpha]^{25.87}$ _D:-52.26° (c = 0.03, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3422, 3334, 3019, 2408, 1675, 1217, 763; ¹H NMR (700 MHz, CDCl₃) δ ppm 9.30 (bs, 1H), 8.29 (d, J = 8.4Hz, 1H), 7.38 (t, J = 7.9 Hz, 1H), 7.36 - 7.27 (m, 6H), 7.25 (m, 2H), 7.08 (t, J = 7.3 Hz, 1H), 6.64 (bs, 1H), 5.89 (bs, 1H), 5.19 (d, J = 12.5 Hz, 1H), 5.07

(d, J = 12.5 Hz, 1H), 5.04 - 5.00 (m, 1H), 4.69 (bs, 1H), 4.65 (t, J = 6.7 Hz, 1H), 4.54 (bs, 1H), 4.32 (bs, 1H), 3.74 (s, 3H), 3.43 (m, 2H), 3.36 (m, 1H), 3.18 (m, 1H), 2.2 (m, 3H), 2.0 (m, 2H), 1.95 (m, 2H), 1.85 (m, 4H), 1.65 (m, 1H), 1.43 (s, 9H), 0.94 (m, 9H), 0.89 (d, J = 6.7 Hz, 3H); ¹³C NMR (175MHz, CDCl₃) δ ppm 172.6, 172.5, 171.7, 171.5, 168.9, 157.2, 155.6, 136.7, 135.1, 130.8, 128.4, 128.1, 128.0, 126.7, 125.8, 123.8, 122.0, 79.6, 66.5, 60.0,

57.8, 53.1, 52.9, 52.2, 49.6, 41.1, 39.8, 31.1, 30.4, 29.0, 28.3, 26.1, 25.1, 24.8, 23.2, 21.5, 18.8, 18.0; HRMS (ESI) C42H60N6O10 calculated [M+H]⁺: 809.4371, found 809.4432, C42H60N6NaO10 calculated [M+Na]⁺831.4269, found 831.4244.

Compound 14a Boc-(z)^LOrni^LLeuAnt^LProVal-OH: Following the same hydrolysis procedure of **8**, compound **14** was hydrolyzed to **14a** (Boc-(z)^LOrni^LLeuAnt^LProVal-OH or Boc-Penta-OH).

Attempts for synthesis of cyclic compound 15: Initially, synthesis of cyclic compound 15 was attempted using same synthetic procedure of 2, but reaction did not give the desired product 15. Later, this reaction was tried using various coupling reagents but none of the reaction offered the cyclic compound 15.

Compound 16 Boc-((z)^LOrni^LLeuAnt^LProVal)₂-OMe (Deca-peptide): Following the same

synthetic procedure of **9**, compound **16** was synthesized. The crude product was purified by column chromatography (eluent: 70% AcOEt/pet. Ether, R_f: 0.3) to furnish **16** (0.57 g, 62%) as a white fluffy solid. Mp: 128-130°C; $[\alpha]^{26}$ · D: -755° (c = 0.014, CHCl₃); IR (CHCl₃) v (cm⁻¹) 3324, 3021, 2969, 1674,

1519, 1422, 1217, 1039, 766, 670; ¹H NMR (500 MHz, CDCl₃) δ ppm: 9.82 (bs, 1H), 9.44 (bs, 1H), 8.39 (bs, 1H), 8.17 (d, *J* = 6.9 Hz, 1H), 7.84 (d. *J* = 5.9 Hz, 1H), 7.56 (bs, 1H), 7.42 (d, *J* = 7.1 Hz, 1H), 7.31 (m., 3H), 7.29 (m, 7H), 7.16 (m., 3H), 7.03 (m, 2H), 6.96 (t, *J* = 6.9 Hz, 1H), 6.25 (bs, 1H), 6.09 (bs, 1H), 5.42 (m, 1H), 5.09 (m, 2H), 5.04 (m, 2H), 4.87 (m, 3H), 4.67 (m, 1H), 4.58 (dd, *J* = 4.4, 8.6 Hz, 1H), 4.45 (m, 2 H), 4.30 (m, 1H), 3.74 (s, 3H), 3.67 (m, 1H), 3.54 (m, 2H), 3.24 (m, 1H), 2.94 (m, 2H), 2.81 (m, 2H), 2.35 (m, 4H), 2.0 (m, 1H), 1.95 (m, 5H), 1.7(m, 4H) 1.64 (m, 6H), 1.43 (bs, 9H), 1.08 (m, 24H); ¹³C NMR (125MHz, CDCl₃) δ ppm 172.6, 172.5, 171.9, 171.7, 171.6, 171.4, 171.3, 168.8, 168.8, 156.9, 156.9, 155.7, 136.8, 136.7, 135.1, 134.5, 130.6, 128.3, 128.3, 128.0, 128.0, 127.9, 127.9, 127.8, 127.7, 126.9, 126.8, 126.6, 126.1, 122.6, 122.1, 79.9, 66.4, 66.3, 60.5, 60.0, 57.8, 53.3, 52.7, 52.6, 52.2, 52.1, 49.6, 49.3, 45.8, 41.2, 40.1, 39.8, 31.1, 30.9, 30.8, 29.5, 29.3, 28.9, 28.3, 28.2, 25.9, 25.1, 24.8, 24.8, 23.1, 23.0, 21.7, 21.6, 18.9, 18.8, 18.7, 18.0; HRMS (ESI) C₇₈H₁₀₈N₁₂O₁₇ calculated [M+H]⁺: 1485.7955, found 1485.8011.

Attempt to synthesis of cyclic compound 17: Using the same synthetic procedure of 1, for synthesis of compound 17 was attempted; but reaction did not give the desired cyclic product 17.

Variable temperature studies

Figure S1. Stacked partial ¹H NMR spectra of 1 (2 mM, 700 MHz) in DMSO- d_6 at different temperatures.

Temperature (in K)	Chemical shift (in ppm)				
	δ _{Ant-NH}	δ_{Val-NH}	δ_{Leu-NH}	δ _{Orn-NH1}	δ _{Orn-NH2}
298	10.04	8.84	8.61	8.44	7.07
303	10.03	8.82	8.58	8.43	7.06
313	10.02	8.77	8.53	8.4	6.99
323	9.99	8.72	8.48	8.38	6.93
333	9.97	8.67	8.44	8.36	6.88
343	9.94	8.61	8.39	8.33	6.81
353	9.91	8.56	8.34	8.31	6.74

Table S1a: Temperature variable study of 1 (2 mM, 700 MHz) in DMSO-d₆.

 Table S1b:
 Temperature coefficient for each NH of 1

NH of 1	Temperature Coefficient in		
	ppb/K		
Ant-NH	-2.36		
Val-NH	-5.09		
Leu-NH	-4.9		
Orn-NH	-2.31		
Orn-NH	-6.0		

Figure S2. Stacked plot of partial ¹H NMR spectra of **2** (5 mM, 700 MHz) in DMSO- d_6 at different temperatures.

Temperature (K)	Chemical shift (in ppm)				
	δ _{Ant-NH}	δ_{Val-NH}	δ _{Leu-NH}	δ _{Orn-NH1}	δ _{Orn-NH2}
298	9.59	8.43	7.93	7.71	7.26
303	9.57	8.43	7.91	7.69	7.24
308	9.54	8.42	7.87	7.67	7.21
313	9.52	8.41	7.84	7.66	7.18
323	9.47	8.39	7.79	7.63	7.12
333	9.43	8.37	7.73	7.6	7.07
343	9.38	8.35	7.69	7.57	7
353	9.34	8.33	7.64	7.54	6.93

Table S2a: Temperature variation study of 2 (5 mM, 700 MHz) in DMSO- d_6

Table S2b: Temperature coefficient for each NH of ${\bf 2}$

NH of 2	Temperature Coefficient in
	ppb/K
Ant-NH	-4.36
Val-NH	-1.81
Leu-NH	-5.27
Orn-NH	-3.09
Orn-δNH2	-6.0

Figure S3. Partial COSY spectra of 1 (10 mM, 700 MHz) in DMSO-d₆

Cbz-1

Figure S4. Full TOCSY spectra of 1 (10 mM, 700 MHz) in DMSO- d_6

Table S3: Signa	l assignment	of 1 from	TOCSY	Spectra.
-----------------	--------------	------------------	-------	----------

Proton Vs	NH1	αH/1H	βH/2H	үН/ЗН	δΗ/4Η	NH2
chemical						
SIIIIt						
Val	8.86(d)	4.61(t)	1.86(m)	0.77(d)C3H		
	NH1	C1H	С2Н	0.79(d)C3'H		
Pro		4.70(dd)	2.25(m)	1.82(m)	3.11(m)C10H	
		C7H	C8H	С9Н	3.22(m)C10'H	
Ant	10.04(s)	8.18(d)	7.33(t)	7.08(t)	7.19(d)	
	NH2	C14H	C15H	C16H	C17H	
Leu	8.58(d)	5.63(t)	1.65(m)C20H	1.58(m)	0.83(d)C22H	
	NH3	C19H	1.38(m)C20'H	C21H	0.87(d)C23H	
Orn	8.43(d)	4.66(m)	1.66(m)	1.37(m)	2.85(m)	7.08(t)
	NH4	C25H	С26Н	С27Н	28CH	NH5

Figure S5. Full HSQC spectra of 1 (10 mM, 700 MHz) in DMSO- d_6

Figure S6 Full ROESY spectra of 1 (10 mM, 700 MHz) in DMSO-d₆

Figure S7 Partial COSY spectra of **2**, (10 mM, 700 MHz) in DMSO-*d*₆: aliphatic region (**a**), aromatic region (**b**).

S47

Figure S8 Full TOCSY spectra of 2 (10 mM, 700 MHz) in DMSO-d6

Proton Vs	NH1	αH/1H	βН/2Н	γH/3H	δН/4Н	NH2
chemical						
shift						
Val	8.83(d)	4.34(dd)	2.47(m)	0.94(d)C4H		
	NH1	C2H	СЗН	0.93(d)C5H		
Pro		4.68(br. d)	2.20(m)	1.88(m)	3.75(m)C10H	
		C7H	C8H	С9Н	3.34(m)C10'H	
Ant	9.59(s)	8.51(d)	7.49(t)	7.14(t)	7.50(d)	
	NH2	C14H	C15H	C16H	C17H	
Leu	7.94(d)	3.76(m)	2.07(m) C20H	1.51(m)	0.88(d)C22H	
	NH3	С19Н	1.92 (m)	C21H	0.86(d)C23H	
			С20'Н			
Orn	7.71(d)	4.46(m)	1.91(m)	1.35(m)	2.96(m)	7.26(t)
	NH4	С25Н	С26Н	C27H	28CH	NH5

 Table S4: Signal assignment of 2 from TOCSY Spectra.

Figure S9 a) HSQC spectra, b) HMBC spectra of 2 (10 mM, 700 MHz) in DMSO-d₆

Figure S10 ROESY spectra of 2 (10 mM, 700 MHz) in DMSO-d₆

Molecular Dynamic Studies

The molecular dynamic study was carried out on MacroModel, version 10.8 program from Schrodinger software with OPLS_2005 Force Field, using the quantitative restraints obtained from the ROESY spectra calculating the relativity of cross-peak intensities of the volume integrals. The 20 superimposed minimum energy of 1 (RMSD <0.15Å) and 2 (RMSD <0.2 Å).

Atom1	Atom2	Upper Bound(Å)	Lower Bound(A	Â)
14H	15H	2.68	2.2	
NH2	19H	2.43	1.99	
NH2	10aH	3.75	3.07	
NH1	4H/5H	3.79	3.1	15 12 13 9 14 13 11 N 7 8
NH1	3Н	3.09	2.53	NH2 NH2 O 6 NH1
NH1	2H	3.48	2.85	0 NH5 NH3 19 21 5 3 2
NH1	7H	2.6	2.12	30 NH $H-N$ 24 4 10 36 31 029 27 24 4 10 27 10 $H-N$
NH3	21H	3.57	2.92	33 32 26 25 HH4
NH3	20H	3.25	2.66	
NH3	25H	2.49	2.03	
NH3	19H	3.43	2.81	
NH4	2H	2.5	2.05	
NH4	25H	3.69	3.02	
NH5	27aH	3.76	3.08	
NH5	27bH	4.79	3.92	
NH5	28H	2.83	2.31	
30H	32H/36H	2.91	2.38	
2H	19H	3.23	2.64	
19H	22H/23H	2.75	2.25	
19H	20H	3.06	2.5	
19H	21H	3.62	2.97	
2H	4H/5H	2.46	2.01	
25H	27H	3.32	2.72	
25H	26аН	2.95	2.41	
25H	26bH	3.08	2.52	
7H	9aH	3.2	2.62	
2H	3Н	3.2	2.61	
7H	8H	2.63	2.15	

Table S5: ROESY restraints used for MD simulation studies of 1

Figure S11 Different stereo views of 20 superimposed minimum energy structures for peptide 1. Note-hydrogens, other than the polar amide hydrogens have been removed for clarity.

Atom I	Atom II	Upper Bound	Lower Bound
14H	15H	2.68	2.2
NH2	NH3	2.88	2.36
NH2	NH4	3.3	2.7
NH2	14H	4.32	3.54
NH2	19H	3.34	2.73
NH1	3H	3.78	3.09
NH1	2H	3.35	2.74
NH1	7H	2.41	1.97
NH1	NH4	2.88	2.36
NH3	21H	3.57	2.92
NH3	26aH	3.64	2.98
NH3	20AH	3.77	3.08
NH3	25H	3.07	2.51
NH3	2H	4.18	3.42
NH4	4H/5H	4.07	3.33
NH4	27aH	3.05	2.49
NH4	27bH	3.53	2.88
NH4	2H	3.43	2.81
NH4	25H	3.25	2.66
17H	10bH	3.44	2.82
17H	10aH	2.49	2.04
30H	32H/36H	2.88	2.36
NH5	28H	2.72	2.23

Table S6: ROESY restraints used for MD simulation studies of 2

NH5	26aH	3.57	2.92
NH5	27aH	3.72	3.05
NH5	27bH	3.45	2.82
7H	9aH	3.11	2.54
7H	8aH	2.65	2.17
25H	28aH	3.12	2.56
2H	4H/5H	2.59	2.12
19H	22H/23H	2.64	2.16
19H	21H	3.26	2.67
NH1	4H/5H	2.65	2.17
NH3	22H/23H	3.64	2.98
7H	10aH	4	3.28
NH3	NH4	3.07	2.51
NH4	7H	4.08	3.34

Figure S12 Stereo view of 10 superimposed minimum energy structures for peptide **2**. Note-hydrogens, other than the polar amide have been removed for clarity.

X-ray Crystallography

	Х	у	Z	U(eq)
C(1)	5104(2)	7355(3)	5249(1)	24(1)
C(2)	7335(2)	8037(2)	5444(1)	22(1)
C(3)	8128(2)	7905(2)	5675(1)	20(1)
C(4)	9163(2)	8854(3)	5727(1)	24(1)
C(5)	9461(3)	9910(3)	5554(1)	27(1)
C(6)	8703(3)	10013(3)	5325(1)	28(1)
C(7)	7644(3)	9096(3)	5270(1)	26(1)
C(8)	7812(2)	6778(2)	5868(1)	20(1)
C(9)	7710(2)	4289(2)	5944(1)	19(1)
C(10)	8538(3)	3081(3)	5824(1)	26(1)
C(11)	9737(3)	3781(3)	5683(1)	29(1)
C(12)	9121(2)	5129(2)	5583(1)	23(1)
C(13)	6171(2)	4055(2)	5899(1)	19(1)
C(14)	4263(2)	2494(2)	5982(1)	22(1)
C(15)	4433(3)	1307(3)	5782(1)	29(1)
C(16)	3064(3)	857(3)	5665(1)	45(1)
C(17)	5225(3)	81(3)	5894(1)	39(1)
C(18)	3535(2)	2023(2)	6229(1)	23(1)
C(19)	1355(3)	1541(3)	6417(1)	41(1)
C(20)	2867(2)	6275(3)	5153(1)	23(1)
C(21)	2024(3)	7431(3)	5274(1)	29(1)
C(22)	2302(3)	4872(3)	5235(1)	30(1)
C(23)	2958(3)	6379(3)	4857(1)	32(1)
N(1)	6247(2)	7099(2)	5401(1)	24(1)
N(2)	8157(2)	5497(2)	5795(1)	19(1)
N(3)	5598(2)	3079(2)	6052(1)	22(1)
O(1)	4884(2)	8387(2)	5123(1)	32(1)
O(2)	7231(2)	7027(2)	6079(1)	24(1)
O(3)	5529(2)	4664(2)	5725(1)	24(1)
O(4)	4100(2)	1603(2)	6423(1)	30(1)
O(5)	2159(2)	2101(2)	6202(1)	33(1)
O(6)	4263(2)	6249(2)	5269(1)	26(1)

Table S7. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **6**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-O(1)	1.210(3)
C(1)-O(6)	1.350(3)
C(1)-N(1)	1.373(3)
C(2)-C(7)	1.392(3)
C(2)-C(3)	1.411(3)
C(2)-N(1)	1.409(3)
C(3)-C(4)	1.386(3)
C(3)-C(8)	1.501(3)
C(4)-C(5)	1.383(3)
C(4)-H(4)	0.9500
C(5)-C(6)	1.384(3)
C(5)-H(5)	0.9500
C(6)-C(7)	1.386(3)
C(6)-H(6)	0.9500
C(7)-H(7)	0.9500
C(8)-O(2)	1.243(3)
C(8)-N(2)	1.338(3)
C(9)-N(2)	1.461(3)
C(9)-C(13)	1.525(3)
C(9)-C(10)	1.543(3)
C(9)-H(9)	1.0000
C(10)-C(11)	1.526(3)
C(10)-H(10A)	0.9900
C(10)-H(10B)	0.9900
C(11)-C(12)	1.523(3)
C(11)-H(11B)	0.9900
C(11)-H(11A)	0.9900
C(12)-N(2)	1.471(3)
C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900
C(13)-O(3)	1.233(3)
C(13)-N(3)	1.347(3)
C(14)-N(3)	1.456(3)
C(14)-C(18)	1.513(3)
C(14)-C(15)	1.550(3)
C(14)-H(14)	1.0000

 $Table \ S8. \ {\rm Bond \ lengths \ } [{\rm \AA}] \ {\rm and \ angles \ } [^{\circ}] \ {\rm for} \ 6.$

C(15)-C(16)	1.518(4)
C(15)-C(17)	1.526(4)
С(15)-Н(15)	1.0000
C(16)-H(16B)	0.9800
C(16)-H(16A)	0.9800
С(16)-Н(16С)	0.9800
C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800
C(17)-H(17A)	0.9800
C(18)-O(4)	1.201(3)
C(18)-O(5)	1.343(3)
C(19)-O(5)	1.452(3)
C(19)-H(19B)	0.9800
C(19)-H(19A)	0.9800
C(19)-H(19C)	0.9800
C(20)-O(6)	1.476(3)
C(20)-C(21)	1.517(3)
C(20)-C(23)	1.521(3)
C(20)-C(22)	1.524(3)
C(21)-H(21A)	0.9800
C(21)-H(21C)	0.9800
C(21)-H(21B)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
C(22)-H(22A)	0.9800
C(23)-H(23C)	0.9800
C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800
N(1)-H(1N)	0.8800
N(3)-H(3N)	0.8800
O(1)-C(1)-O(6)	126.2(2)
O(1)-C(1)-N(1)	126.3(2)
O(6)-C(1)-N(1)	107.49(19)
C(7)-C(2)-C(3)	119.0(2)
C(7)-C(2)-N(1)	122.3(2)
C(3)-C(2)-N(1)	118.7(2)
C(4)-C(3)-C(2)	119.6(2)

C(4)-C(3)-C(8)	120.2(2)
C(2)-C(3)-C(8)	120.2(2)
C(5)-C(4)-C(3)	121.2(2)
C(5)-C(4)-H(4)	119.4
C(3)-C(4)-H(4)	119.4
C(4)-C(5)-C(6)	118.9(2)
C(4)-C(5)-H(5)	120.6
C(6)-C(5)-H(5)	120.6
C(5)-C(6)-C(7)	121.2(2)
C(5)-C(6)-H(6)	119.4
C(7)-C(6)-H(6)	119.4
C(6)-C(7)-C(2)	120.1(2)
C(6)-C(7)-H(7)	120.0
C(2)-C(7)-H(7)	120.0
O(2)-C(8)-N(2)	122.3(2)
O(2)-C(8)-C(3)	121.4(2)
N(2)-C(8)-C(3)	116.18(18)
N(2)-C(9)-C(13)	109.26(18)
N(2)-C(9)-C(10)	104.33(17)
C(13)-C(9)-C(10)	109.60(19)
N(2)-C(9)-H(9)	111.1
С(13)-С(9)-Н(9)	111.1
С(10)-С(9)-Н(9)	111.1
C(11)-C(10)-C(9)	104.17(19)
С(11)-С(10)-Н(10А)	110.9
C(9)-C(10)-H(10A)	110.9
С(11)-С(10)-Н(10В)	110.9
C(9)-C(10)-H(10B)	110.9
H(10A)-C(10)-H(10B)	108.9
C(10)-C(11)-C(12)	103.94(19)
С(10)-С(11)-Н(11В)	111.0
С(12)-С(11)-Н(11В)	111.0
С(10)-С(11)-Н(11А)	111.0
C(12)-C(11)-H(11A)	111.0
H(11B)-C(11)-H(11A)	109.0
N(2)-C(12)-C(11)	102.17(18)
N(2)-C(12)-H(12A)	111.3
C(11)-C(12)-H(12A)	111.3

N(2)-C(12)-H(12B)	111.3
С(11)-С(12)-Н(12В)	111.3
H(12A)-C(12)-H(12B)	109.2
O(3)-C(13)-N(3)	123.0(2)
O(3)-C(13)-C(9)	122.1(2)
N(3)-C(13)-C(9)	114.81(19)
N(3)-C(14)-C(18)	109.17(18)
N(3)-C(14)-C(15)	110.8(2)
C(18)-C(14)-C(15)	112.1(2)
N(3)-C(14)-H(14)	108.2
C(18)-C(14)-H(14)	108.2
C(15)-C(14)-H(14)	108.2
C(16)-C(15)-C(17)	111.4(2)
C(16)-C(15)-C(14)	112.4(2)
C(17)-C(15)-C(14)	112.4(2)
С(16)-С(15)-Н(15)	106.7
С(17)-С(15)-Н(15)	106.7
С(14)-С(15)-Н(15)	106.7
C(15)-C(16)-H(16B)	109.5
C(15)-C(16)-H(16A)	109.5
H(16B)-C(16)-H(16A)	109.5
С(15)-С(16)-Н(16С)	109.5
H(16B)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
C(15)-C(17)-H(17B)	109.5
С(15)-С(17)-Н(17С)	109.5
H(17B)-C(17)-H(17C)	109.5
С(15)-С(17)-Н(17А)	109.5
H(17B)-C(17)-H(17A)	109.5
H(17C)-C(17)-H(17A)	109.5
O(4)-C(18)-O(5)	123.8(2)
O(4)-C(18)-C(14)	125.1(2)
O(5)-C(18)-C(14)	111.04(19)
O(5)-C(19)-H(19B)	109.5
O(5)-C(19)-H(19A)	109.5
H(19B)-C(19)-H(19A)	109.5
O(5)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5

O(6)-C(20)-C(21)	109.98(19)
O(6)-C(20)-C(23)	110.35(19)
C(21)-C(20)-C(23)	112.9(2)
O(6)-C(20)-C(22)	101.73(19)
C(21)-C(20)-C(22)	110.7(2)
C(23)-C(20)-C(22)	110.7(2)
C(20)-C(21)-H(21A)	109.5
С(20)-С(21)-Н(21С)	109.5
H(21A)-C(21)-H(21C)	109.5
C(20)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
H(21C)-C(21)-H(21B)	109.5
C(20)-C(22)-H(22B)	109.5
C(20)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
C(20)-C(22)-H(22A)	109.5
H(22B)-C(22)-H(22A)	109.5
H(22C)-C(22)-H(22A)	109.5
C(20)-C(23)-H(23C)	109.5
C(20)-C(23)-H(23A)	109.5
H(23C)-C(23)-H(23A)	109.5
C(20)-C(23)-H(23B)	109.5
H(23C)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5
C(1)-N(1)-C(2)	125.2(2)
C(1)-N(1)-H(1N)	117.4
C(2)-N(1)-H(1N)	117.4
C(8)-N(2)-C(9)	121.61(18)
C(8)-N(2)-C(12)	125.97(19)
C(9)-N(2)-C(12)	112.07(17)
C(13)-N(3)-C(14)	119.88(19)
C(13)-N(3)-H(3N)	120.1
C(14)-N(3)-H(3N)	120.1
C(18)-O(5)-C(19)	115.65(19)
C(1)-O(6)-C(20)	120.55(19)
$\begin{array}{l} H(23C)-C(23)-H(23A) \\ C(20)-C(23)-H(23B) \\ H(23C)-C(23)-H(23B) \\ H(23A)-C(23)-H(23B) \\ C(1)-N(1)-C(2) \\ C(1)-N(1)-C(2) \\ C(1)-N(1)-H(1N) \\ C(2)-N(1)-H(1N) \\ C(2)-N(1)-H(1N) \\ C(8)-N(2)-C(9) \\ C(8)-N(2)-C(9) \\ C(8)-N(2)-C(12) \\ C(9)-N(2)-C(12) \\ C(13)-N(3)-C(14) \\ C(13)-N(3)-H(3N) \\ C(14)-N(3)-H(3N) \\ C(18)-O(5)-C(19) \\ C(1)-O(6)-C(20) \\ \end{array}$	109.5 109.5 109.5 125.2(2) 117.4 117.4 121.61(18) 125.97(19) 112.07(17) 119.88(19) 120.1 120.1 115.65(19) 120.55(19)

Symmetry transformations used to generate equivalent atoms.

Identification code	mo_LLTRI_220816_0m	
Empirical formula	C23 H33 N3 O6	
Formula weight	447.52	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21	
Unit cell dimensions	a = 13.3238(5) Å	α= 90°.
	b = 7.2153(3) Å	β= 114.1870(10)°.
	c = 13.5409(6) Å	$\gamma = 90^{\circ}$.
Volume	1187.48(9) Å ³	
Ζ	2	
Density (calculated)	1.252 Mg/m ³	
Absorption coefficient	0.091 mm ⁻¹	
F(000)	480	
Crystal size	0.340 x 0.210 x 0.100 mm ³	
Theta range for data collection	2.791 to 30.531°.	
Index ranges	-18<=h<=19, -10<=k<=10, -19<=l<=19	
Reflections collected	41983	
Independent reflections	7203 [R(int) = 0.0621]	
Completeness to theta = 25.242°	99.1 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	7203 / 1 / 295	
Goodness-of-fit on F ²	1.036	
Final R indices [I>2sigma(I)]	R1 = 0.0358, $wR2 = 0.0861$	
R indices (all data)	R1 = 0.0388, wR2 = 0.0878	
Absolute structure parameter	0.3(3)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.323 and -0.271 e.Å ⁻³	

Table S9. Crystal data and structure refinement for 12.

	Х	у	Z	U(eq)
C(1)	7442(1)	3980(2)	2003(1)	17(1)
C(2)	7994(1)	2881(2)	3858(1)	12(1)
C(3)	7866(1)	3336(2)	4809(1)	11(1)
C(4)	8649(1)	2751(2)	5812(1)	16(1)
C(5)	9566(1)	1739(2)	5884(1)	18(1)
C(6)	9676(1)	1263(2)	4941(1)	17(1)
C(7)	8902(1)	1816(2)	3937(1)	15(1)
C(8)	6845(1)	4266(2)	4778(1)	12(1)
C(9)	5518(1)	6765(2)	4083(1)	14(1)
C(10)	5629(1)	8742(2)	3710(2)	23(1)
C(11)	6485(1)	8513(2)	3236(1)	21(1)
C(12)	7321(1)	7216(2)	4045(1)	13(1)
C(13)	4690(1)	5650(2)	3141(1)	12(1)
C(14)	2769(1)	5011(2)	2042(1)	11(1)
C(15)	2334(1)	3170(2)	2307(1)	14(1)
C(16)	1646(1)	3481(3)	2955(2)	23(1)
C(17)	3283(1)	1844(2)	2884(1)	19(1)
C(18)	1825(1)	6332(2)	1469(1)	13(1)
C(19)	218(1)	6668(3)	-150(2)	27(1)
C(20)	6586(2)	5442(3)	231(2)	27(1)
C(21)	5422(2)	6129(3)	-417(2)	29(1)
C(22)	6866(2)	3892(5)	-381(2)	52(1)
C(23)	7386(2)	7042(5)	530(2)	53(1)
N(1)	7187(1)	3435(2)	2841(1)	13(1)
N(2)	6620(1)	5991(2)	4373(1)	11(1)
N(3)	3625(1)	5886(2)	2971(1)	12(1)
O(1)	8341(1)	3874(3)	1985(1)	32(1)
O(2)	6230(1)	3427(2)	5103(1)	17(1)
O(3)	4978(1)	4674(2)	2559(1)	16(1)
O(4)	1661(1)	7781(2)	1812(1)	17(1)
O(5)	1179(1)	5606(2)	508(1)	19(1)
O(6)	6527(1)	4675(2)	1212(1)	18(1)

Table S10. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **12**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-O(1)	1.210(2)
C(1)-O(6)	1.3477(19)
C(1)-N(1)	1.370(2)
C(2)-C(7)	1.400(2)
C(2)-C(3)	1.404(2)
C(2)-N(1)	1.4136(18)
C(3)-C(4)	1.397(2)
C(3)-C(8)	1.5020(19)
C(4)-C(5)	1.391(2)
C(4)-H(4)	0.9500
C(5)-C(6)	1.387(2)
C(5)-H(5)	0.9500
C(6)-C(7)	1.386(2)
C(6)-H(6)	0.9500
C(7)-H(7)	0.9500
C(8)-O(2)	1.2360(18)
C(8)-N(2)	1.344(2)
C(9)-N(2)	1.4664(18)
C(9)-C(13)	1.529(2)
C(9)-C(10)	1.540(2)
C(9)-H(9)	1.0000
C(10)-C(11)	1.529(3)
C(10)-H(10B)	0.9900
C(10)-H(10A)	0.9900
C(11)-C(12)	1.522(2)
C(11)-H(11B)	0.9900
C(11)-H(11A)	0.9900
C(12)-N(2)	1.4802(19)
C(12)-H(12B)	0.9900
C(12)-H(12A)	0.9900
C(13)-O(3)	1.2292(18)
C(13)-N(3)	1.3523(18)
C(14)-N(3)	1.4515(18)
C(14)-C(18)	1.514(2)
C(14)-C(15)	1.549(2)
C(14)-H(14)	1.0000

Table S11. Bond lengths [Å] and angles [°] for 12 $\,$

C(15)-C(17)	1.521(2)
C(15)-C(16)	1.523(2)
C(15)-H(15)	1.0000
C(16)-H(16B)	0.9800
C(16)-H(16A)	0.9800
C(16)-H(16C)	0.9800
C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800
C(17)-H(17A)	0.9800
C(18)-O(4)	1.200(2)
C(18)-O(5)	1.3387(18)
C(19)-O(5)	1.4433(19)
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
С(19)-Н(19С)	0.9800
C(20)-O(6)	1.471(2)
C(20)-C(23)	1.510(4)
C(20)-C(21)	1.518(3)
C(20)-C(22)	1.526(3)
C(21)-H(21C)	0.9800
C(21)-H(21A)	0.9800
C(21)-H(21B)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
C(22)-H(22A)	0.9800
C(23)-H(23C)	0.9800
C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800
N(1)-H(1N)	0.8800
N(3)-H(3N)	0.8800
O(1)-C(1)-O(6)	126.07(15)
O(1)-C(1)-N(1)	125.61(15)
O(6)-C(1)-N(1)	108.32(13)
C(7)-C(2)-C(3)	118.91(13)
C(7)-C(2)-N(1)	121.19(13)
C(3)-C(2)-N(1)	119.85(12)
C(4)-C(3)-C(2)	119.88(13)

C(4)-C(3)-C(8)	117.97(13)
C(2)-C(3)-C(8)	121.82(12)
C(5)-C(4)-C(3)	120.72(15)
C(5)-C(4)-H(4)	119.6
C(3)-C(4)-H(4)	119.6
C(6)-C(5)-C(4)	119.11(14)
C(6)-C(5)-H(5)	120.4
C(4)-C(5)-H(5)	120.4
C(7)-C(6)-C(5)	120.95(14)
C(7)-C(6)-H(6)	119.5
C(5)-C(6)-H(6)	119.5
C(6)-C(7)-C(2)	120.39(14)
C(6)-C(7)-H(7)	119.8
С(2)-С(7)-Н(7)	119.8
O(2)-C(8)-N(2)	121.94(13)
O(2)-C(8)-C(3)	119.79(13)
N(2)-C(8)-C(3)	118.25(12)
N(2)-C(9)-C(13)	108.93(12)
N(2)-C(9)-C(10)	102.71(12)
C(13)-C(9)-C(10)	110.33(13)
N(2)-C(9)-H(9)	111.5
С(13)-С(9)-Н(9)	111.5
C(10)-C(9)-H(9)	111.5
C(11)-C(10)-C(9)	103.05(13)
C(11)-C(10)-H(10B)	111.2
C(9)-C(10)-H(10B)	111.2
С(11)-С(10)-Н(10А)	111.2
С(9)-С(10)-Н(10А)	111.2
H(10B)-C(10)-H(10A)	109.1
C(12)-C(11)-C(10)	102.49(14)
С(12)-С(11)-Н(11В)	111.3
C(10)-C(11)-H(11B)	111.3
С(12)-С(11)-Н(11А)	111.3
С(10)-С(11)-Н(11А)	111.3
H(11B)-C(11)-H(11A)	109.2
N(2)-C(12)-C(11)	102.54(11)
N(2)-C(12)-H(12B)	111.3
C(11)-C(12)-H(12B)	111.3

N(2)-C(12)-H(12A)	111.3
С(11)-С(12)-Н(12А)	111.3
H(12B)-C(12)-H(12A)	109.2
O(3)-C(13)-N(3)	122.97(13)
O(3)-C(13)-C(9)	121.92(13)
N(3)-C(13)-C(9)	115.04(13)
N(3)-C(14)-C(18)	111.29(12)
N(3)-C(14)-C(15)	114.02(12)
C(18)-C(14)-C(15)	110.32(11)
N(3)-C(14)-H(14)	106.9
C(18)-C(14)-H(14)	106.9
C(15)-C(14)-H(14)	106.9
C(17)-C(15)-C(16)	111.52(14)
C(17)-C(15)-C(14)	110.32(12)
C(16)-C(15)-C(14)	112.20(13)
С(17)-С(15)-Н(15)	107.5
С(16)-С(15)-Н(15)	107.5
С(14)-С(15)-Н(15)	107.5
C(15)-C(16)-H(16B)	109.5
C(15)-C(16)-H(16A)	109.5
H(16B)-C(16)-H(16A)	109.5
C(15)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
С(15)-С(17)-Н(17В)	109.5
С(15)-С(17)-Н(17С)	109.5
H(17B)-C(17)-H(17C)	109.5
C(15)-C(17)-H(17A)	109.5
H(17B)-C(17)-H(17A)	109.5
H(17C)-C(17)-H(17A)	109.5
O(4)-C(18)-O(5)	124.78(14)
O(4)-C(18)-C(14)	126.54(13)
O(5)-C(18)-C(14)	108.68(12)
O(5)-C(19)-H(19A)	109.5
O(5)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
O(5)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5

H(19B)-C(19)-H(19C)	109.5
O(6)-C(20)-C(23)	109.78(17)
O(6)-C(20)-C(21)	102.94(14)
C(23)-C(20)-C(21)	110.31(19)
O(6)-C(20)-C(22)	109.27(17)
C(23)-C(20)-C(22)	113.8(2)
C(21)-C(20)-C(22)	110.18(18)
C(20)-C(21)-H(21C)	109.5
C(20)-C(21)-H(21A)	109.5
H(21C)-C(21)-H(21A)	109.5
C(20)-C(21)-H(21B)	109.5
H(21C)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
C(20)-C(22)-H(22B)	109.5
C(20)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
C(20)-C(22)-H(22A)	109.5
H(22B)-C(22)-H(22A)	109.5
H(22C)-C(22)-H(22A)	109.5
C(20)-C(23)-H(23C)	109.5
C(20)-C(23)-H(23A)	109.5
H(23C)-C(23)-H(23A)	109.5
C(20)-C(23)-H(23B)	109.5
H(23C)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5
C(1)-N(1)-C(2)	122.74(12)
C(1)-N(1)-H(1N)	118.6
C(2)-N(1)-H(1N)	118.6
C(8)-N(2)-C(9)	119.59(12)
C(8)-N(2)-C(12)	127.78(12)
C(9)-N(2)-C(12)	112.22(12)
C(13)-N(3)-C(14)	119.30(12)
C(13)-N(3)-H(3N)	120.4
C(14)-N(3)-H(3N)	120.4
C(18)-O(5)-C(19)	116.52(13)
C(1)-O(6)-C(20)	119.43(13)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	16(1)	20(1)	15(1)	1(1)	7(1)	2(1)
C(2)	10(1)	11(1)	13(1)	0(1)	4(1)	0(1)
C(3)	10(1)	10(1)	14(1)	2(1)	5(1)	0(1)
C(4)	14(1)	18(1)	14(1)	4(1)	5(1)	-1(1)
C(5)	13(1)	20(1)	18(1)	7(1)	3(1)	2(1)
C(6)	12(1)	14(1)	25(1)	3(1)	7(1)	2(1)
C(7)	13(1)	14(1)	19(1)	-2(1)	8(1)	1(1)
C(8)	10(1)	15(1)	9(1)	-1(1)	3(1)	-1(1)
C(9)	8(1)	17(1)	14(1)	-5(1)	2(1)	2(1)
C(10)	14(1)	12(1)	38(1)	-4(1)	4(1)	3(1)
C(11)	17(1)	12(1)	28(1)	6(1)	3(1)	-1(1)
C(12)	11(1)	11(1)	16(1)	1(1)	5(1)	-1(1)
C(13)	10(1)	13(1)	12(1)	1(1)	3(1)	1(1)
C(14)	10(1)	13(1)	10(1)	0(1)	2(1)	1(1)
C(15)	13(1)	12(1)	13(1)	1(1)	3(1)	1(1)
C(16)	25(1)	21(1)	28(1)	2(1)	17(1)	0(1)
C(17)	20(1)	16(1)	17(1)	3(1)	3(1)	4(1)
C(18)	10(1)	14(1)	13(1)	2(1)	3(1)	0(1)
C(19)	18(1)	24(1)	25(1)	4(1)	-6(1)	5(1)
C(20)	29(1)	38(1)	18(1)	13(1)	14(1)	12(1)
C(21)	32(1)	35(1)	21(1)	11(1)	10(1)	13(1)
C(22)	63(2)	80(2)	22(1)	16(1)	26(1)	46(2)
C(23)	39(1)	66(2)	51(2)	36(1)	16(1)	-7(1)
N(1)	10(1)	16(1)	12(1)	0(1)	5(1)	2(1)
N(2)	8(1)	14(1)	12(1)	-1(1)	3(1)	0(1)
N(3)	8(1)	14(1)	12(1)	-4(1)	3(1)	1(1)
O(1)	19(1)	56(1)	26(1)	16(1)	15(1)	10(1)
O(2)	14(1)	20(1)	18(1)	0(1)	9(1)	-2(1)
O(3)	12(1)	21(1)	15(1)	-6(1)	5(1)	1(1)
O(4)	17(1)	15(1)	18(1)	1(1)	6(1)	4(1)
O(5)	14(1)	18(1)	15(1)	0(1)	-4(1)	3(1)
O(6)	17(1)	24(1)	13(1)	5(1)	7(1)	5(1)

Table S12. Anisotropic displacement parameters (Å²x 10³) for **12**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a* b* U¹²]

C(7)-C(2)-C(3)-C(4)	1.0(2)
N(1)-C(2)-C(3)-C(4)	178.44(14)
C(7)-C(2)-C(3)-C(8)	-172.24(14)
N(1)-C(2)-C(3)-C(8)	5.2(2)
C(2)-C(3)-C(4)-C(5)	0.8(2)
C(8)-C(3)-C(4)-C(5)	174.37(15)
C(3)-C(4)-C(5)-C(6)	-2.1(2)
C(4)-C(5)-C(6)-C(7)	1.5(2)
C(5)-C(6)-C(7)-C(2)	0.4(2)
C(3)-C(2)-C(7)-C(6)	-1.6(2)
N(1)-C(2)-C(7)-C(6)	-179.01(14)
C(4)-C(3)-C(8)-O(2)	-59.66(19)
C(2)-C(3)-C(8)-O(2)	113.74(16)
C(4)-C(3)-C(8)-N(2)	121.62(15)
C(2)-C(3)-C(8)-N(2)	-64.98(19)
N(2)-C(9)-C(10)-C(11)	30.94(15)
C(13)-C(9)-C(10)-C(11)	-85.06(15)
C(9)-C(10)-C(11)-C(12)	-41.40(16)
C(10)-C(11)-C(12)-N(2)	35.15(15)
N(2)-C(9)-C(13)-O(3)	-19.1(2)
C(10)-C(9)-C(13)-O(3)	92.90(18)
N(2)-C(9)-C(13)-N(3)	163.62(13)
C(10)-C(9)-C(13)-N(3)	-84.34(16)
N(3)-C(14)-C(15)-C(17)	-53.82(16)
C(18)-C(14)-C(15)-C(17)	-179.91(13)
N(3)-C(14)-C(15)-C(16)	71.18(16)
C(18)-C(14)-C(15)-C(16)	-54.91(16)
N(3)-C(14)-C(18)-O(4)	-13.6(2)
C(15)-C(14)-C(18)-O(4)	113.97(16)
N(3)-C(14)-C(18)-O(5)	167.24(12)
C(15)-C(14)-C(18)-O(5)	-65.15(15)
O(1)-C(1)-N(1)-C(2)	8.2(3)
O(6)-C(1)-N(1)-C(2)	-171.01(14)
C(7)-C(2)-N(1)-C(1)	-39.0(2)
C(3)-C(2)-N(1)-C(1)	143.66(15)
O(2)-C(8)-N(2)-C(9)	-13.7(2)

Table S13. Torsion angles [°] for 12.

C(3)-C(8)-N(2)-C(9)	165.01(12)
O(2)-C(8)-N(2)-C(12)	174.24(14)
C(3)-C(8)-N(2)-C(12)	-7.1(2)
C(13)-C(9)-N(2)-C(8)	-65.36(17)
C(10)-C(9)-N(2)-C(8)	177.64(13)
C(13)-C(9)-N(2)-C(12)	107.88(14)
C(10)-C(9)-N(2)-C(12)	-9.12(16)
C(11)-C(12)-N(2)-C(8)	156.14(14)
C(11)-C(12)-N(2)-C(9)	-16.43(16)
O(3)-C(13)-N(3)-C(14)	-2.3(2)
C(9)-C(13)-N(3)-C(14)	174.88(13)
C(18)-C(14)-N(3)-C(13)	-135.77(14)
C(15)-C(14)-N(3)-C(13)	98.66(16)
O(4)-C(18)-O(5)-C(19)	-0.2(2)
C(14)-C(18)-O(5)-C(19)	178.99(14)
O(1)-C(1)-O(6)-C(20)	-1.8(3)
N(1)-C(1)-O(6)-C(20)	177.33(15)
C(23)-C(20)-O(6)-C(1)	-60.4(2)
C(21)-C(20)-O(6)-C(1)	-177.87(15)
C(22)-C(20)-O(6)-C(1)	65.0(2)

CD spectra of protected and deprotected GS mimic 1:

Figure S13. (a) CD spectra of Cbz GS-1 (protected GS mimic) and (b) H-GS-1 (free amine of GS mimic) at right, in methanol.

Details of antibacterial studies:

Bacterial strains *E. coli* (NCIM 2688), *P. aeruginosa* (NCIM 2036) as gram-negative and *B. S. aureus (NCIM 2010), subtilus* (NCIM 2079) as gram-positive were obtained from NCIM (NCL, Pune) and were grown in Luria Burtony medium from Himedia, India. Once the culture reached 1 O.D 620, it was used for anti-bacterial assay. Briefly, 0.1 OD 620 bacterial culture was treated with synthesized compound at different concentration (0-100 μ g/mL) and incubated for 8 h at 37 °C. The *in vitro* preliminary screening values (% inhibition) against microorganisms tested are summarized in Table S 13.

Entry	S. aureus		B. subtilus		E. coli		P. aeruginosa	
	IC ₅₀	MIC	$IC_{5\theta}$	MIC	<i>IC</i> ₅₀	MIC	<i>IC</i> ₅₀	MIC
1	0.42	2.9	0.38	3.66	0.48	10.56	0.45	10.53
2	>100	-	>100	-	>100	-	>100	-

 Table S14: In vitro antibacterial activity

References:

(1) Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- (2) G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112.
- (3) L. J. Farrugia, J. Appl. Cryst. 1997, 30, 565-565.