Electronic Supplementary Information

Divergent synthesis of
3,4-dihydrodibenzo[b,d]furan-1(2H)-ones and isocoumarins
via additive-controlled chemoselective C-C or C-N bond cleavage

Youpeng Zuo, Xinwei He, Yi Ning, Lanlan Zhang, Yuhao Wu, Yongjia Shang*

Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China

Corresponding author: shyj@mail.ahnu.edu.cn

Table of content

Optimization of the Reaction condition----------------------------------S1

Copies of 1H and 13C NMR Spectra for all Compounds ----------S2-S49

X-Ray Crystallography structures of Compound 3aa -------------------S50

X-Ray Crystallography structures of Compound 4ab-------------------S50

HRMS spectra for all Compounds -----------------------------------S51-S66
Table S1 Optimization of the Reaction Conditionsa

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>additive (mol%)</th>
<th>solvent</th>
<th>Temp ($^\circ$C)</th>
<th>Yieldb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[(p-cymene)RuCl$_2$]$_2$</td>
<td>AgNTf$_2$ (10)</td>
<td>MeOH</td>
<td>reflux</td>
<td>trace</td>
</tr>
<tr>
<td>2</td>
<td>Ru(PPh$_3$)Cl$_2$</td>
<td>AgNTf$_2$ (10)</td>
<td>MeOH</td>
<td>reflux</td>
<td>trace</td>
</tr>
<tr>
<td>3</td>
<td>Pd(OAc)$_2$</td>
<td>AgNTf$_2$ (10)</td>
<td>MeOH</td>
<td>reflux</td>
<td>trace</td>
</tr>
<tr>
<td>4</td>
<td>CuI</td>
<td>AgNTf$_2$ (10)</td>
<td>MeOH</td>
<td>reflux</td>
<td>trace</td>
</tr>
<tr>
<td>5</td>
<td>[Cp*RhCl$_2$]$_2$</td>
<td>CsOPiv (10)</td>
<td>MeOH</td>
<td>reflux</td>
<td>trace</td>
</tr>
<tr>
<td>6</td>
<td>[Cp*RhCl$_2$]$_2$</td>
<td>AgOAc (10)</td>
<td>MeOH</td>
<td>reflux</td>
<td>trace</td>
</tr>
<tr>
<td>7</td>
<td>[Cp*RhCl$_2$]$_2$</td>
<td>CsOAc (10)</td>
<td>MeOH</td>
<td>reflux</td>
<td>trace</td>
</tr>
<tr>
<td>8</td>
<td>[Cp*RhCl$_2$]$_2$</td>
<td>AgSbF$_6$ (10)</td>
<td>MeOH</td>
<td>reflux</td>
<td>trace</td>
</tr>
<tr>
<td>9c</td>
<td>[Cp*RhCl$_2$]$_2$</td>
<td>AgNTf$_2$ (10)</td>
<td>MeOH</td>
<td>reflux</td>
<td>74</td>
</tr>
<tr>
<td>10d</td>
<td>[Cp*RhCl$_2$]$_2$</td>
<td>AgNTf$_2$ (10)</td>
<td>MeOH</td>
<td>reflux</td>
<td>67</td>
</tr>
<tr>
<td>11e</td>
<td>[Cp*RhCl$_2$]$_2$</td>
<td>AgNTf$_2$ (10)</td>
<td>MeOH</td>
<td>reflux</td>
<td>53</td>
</tr>
</tbody>
</table>

a Reaction conditions: 2-diazocyclohexane-1,3-dione 1a (0.5 mmol), 2-hydroxy-N-methylbenzamide 2a (0.5 mmol), solvent (3 mL), and catalyst (1.0 mol%), under argon atmosphere. b Isolated yields of compound 3aa. c Reaction time was 20 h. d Reaction time was 10 h. e Reaction time was 8 h.
1H NMR and 13C NMR Spectra of Compound 3aa
1H NMR and 13C NMR Spectra of Compound 3ab
1H NMR and 13C NMR Spectra of Compound 3ac

![H NMR and C NMR Spectra of Compound 3ac](image-url)
1H NMR and 13C NMR Spectra of Compound 3ad
1H NMR and 13C NMR Spectra of Compound 3ae
1H NMR and 13C NMR Spectra of Compound 3af
\(^{1}\)H NMR and \(^{13}\)C NMR Spectra of Compound 3ag

\[
\begin{align*}
&\text{H}_2\text{C} - \text{C} - \text{O} - \text{F} \\
&\text{H}_2\text{C} - \text{C} - \text{O} - \text{F}
\end{align*}
\]
1H NMR and 13C NMR Spectra of Compound 3ah
1H NMR and 13C NMR Spectra of Compound 3ai
1H NMR and 13C NMR Spectra of Compound 3aj

![Spectrum Image]
1H NMR and 13C NMR Spectra of Compound 3ak
1H NMR and 13C NMR Spectra of Compound 3ba

![Diagram of Compound 3ba]

\[\text{Chemical Shifts (ppm):} \]
- 1H NMR: 11.08, 12.49
- 13C NMR: 20.38, 19.12, 21.32, 21.93

S13
1H NMR and 13C NMR Spectra of Compound 3bb
1H NMR and 13C NMR Spectra of Compound 3bc
1H NMR and 13C NMR Spectra of Compound 3bd

\[
\text{H}_3\text{C} \quad \text{H}_2\text{C} \quad \text{CH}_3
\]
1H NMR and 13C NMR Spectra of Compound 3be
1H NMR and 13C NMR Spectra of Compound 3bf
1H NMR and 13C NMR Spectra of Compound 3ca
1H NMR and 13C NMR Spectra of Compound 3cc
1H NMR and 13C NMR Spectra of Compound 3cd
1H NMR and 13C NMR Spectra of Compound 3ce
1H NMR and 13C NMR Spectra of Compound 3cf
1H NMR and 13C NMR Spectra of Compound 3cg
1H NMR and 13C NMR Spectra of Compound 3ch
1H NMR and 13C NMR Spectra of Compound 3da
1H NMR and 13C NMR Spectra of Compound 3db
1H NMR and 13C NMR Spectra of Compound 3dc
1H NMR and 13C NMR Spectra of Compound 3de
\(^1\)H NMR and \(^{13}\)C NMR Spectra of Compound 3ea
1H NMR and 13C NMR Spectra of Compound 3eb
1H NMR and 13C NMR Spectra of Compound 3ec
1H NMR and 13C NMR Spectra of Compound 3ed
1H NMR and 13C NMR Spectra of Compound 4aa
1H NMR and 13C NMR Spectra of Compound 4ab
1H NMR and 13C NMR Spectra of Compound 4ac
1H NMR and 13C NMR Spectra of Compound 4ad
1H NMR and 13C NMR Spectra of Compound 4ae
1H NMR and 13C NMR Spectra of Compound 4ba
1H NMR and 13C NMR Spectra of Compound 4bb
1H NMR and 13C NMR Spectra of Compound 4bc
1H NMR and 13C NMR Spectra of Compound 4bd
1H NMR and 13C NMR Spectra of Compound 4ca
1H NMR and 13C NMR Spectra of Compound 4cb
\(^1\text{H NMR and } ^{13}\text{C NMR Spectra of Compound 4da} \)
1H NMR and 13C NMR Spectra of Compound 4db
1H NMR and 13C NMR Spectra of Compound 4ea
X-Ray Crystallography structures of Compounds 3aa and 4ab

Crystal data for 3aa: C_{14}H_{14}O_{2}, \text{Mr} = 214.26, Monoclinic, \(a = 9.4379(9) \) Å, \(b = 12.1544(11) \) Å, \(c = 9.8277 (9) \) Å, \(\alpha = 90^\circ \), \(\beta = 96.810 (10)^\circ \), \(\gamma = 90^\circ \), \(V = 1119.28 (18) \) Å³, \(T = 293 (2) \) K, space group P2(1)/n, \(Z = 8 \), 8285 reflections collected, 2061 unique (\(R_{int} = 0.0269 \)) which were used in all calculations. The ellipsoid contour probability level in the caption of 30 %.

Crystallographic data for compound 3aa reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-1554775.

Crystal data for 4ab: C_{16}H_{16}O_{4}, \text{Mr} =272.29, Monoclinic, \(a = 8.8746(6) \) Å, \(b = 15.3282(11) \) Å, \(c = 10.0135 (7) \) Å, \(\alpha = 90^\circ \), \(\beta = 95.182 (2)^\circ \), \(\gamma = 90^\circ \), \(V =1356.59 (16) \) Å³, \(T = 293 (2) \) K, space group P2(1)/c, \(Z = 4 \), 23206 reflections collected, 2484 unique (\(R_{int} = 0.0390 \)) which were used in all calculation. The ellipsoid contour probability level in the caption of 30%.

Crystallographic data for compound 4ab reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC- 1555510.
HRMS Spectra of Compound 3aa

HRMS Spectra of Compound 3ab

HRMS Spectra of Compound 3ac
HRMS Spectra of Compound 3ad

HRMS Spectra of Compound 3ae

HRMS Spectra of Compound 3af
HRMS Spectra of Compound 3ag

HRMS Spectra of Compound 3ah

HRMS Spectra of Compound 3ai
HRMS Spectra of Compound 3bb

HRMS Spectra of Compound 3bc

HRMS Spectra of Compound 3bd
HRMS Spectra of Compound 3be

HRMS Spectra of Compound 3bf

HRMS Spectra of Compound 3ca
HRMS Spectra of Compound 3cb

HRMS Spectra of Compound 3cc

HRMS Spectra of Compound 3cd
HRMS Spectra of Compound 3ce

HRMS Spectra of Compound 3cf

HRMS Spectra of Compound 3cg
HRMS Spectra of Compound 3cf

HRMS Spectra of Compound 3da

HRMS Spectra of Compound 3db
HRMS Spectra of Compound 3dc

HRMS Spectra of Compound 3dd

HRMS Spectra of Compound 3de
HRMS Spectra of Compound 3ea

HRMS Spectra of Compound 3eb

HRMS Spectra of Compound 3ec
HRMS Spectra of Compound 3ed

HRMS Spectra of Compound 4aa

HRMS Spectra of Compound 4ab
HRMS Spectra of Compound 4ac

HRMS Spectra of Compound 4ad

HRMS Spectra of Compound 4ae
HRMS Spectra of Compound 4bd

HRMS Spectra of Compound 4ca

HRMS Spectra of Compound 4cb
HRMS Spectra of Compound 4da

HRMS Spectra of Compound 4db