Electronic Supplementary Information

A novel pyrene based dual-multifunctional fluorescence probe for differential sensing of pH and HSO$_3^-$ and its bioimaging in live cells

Jianbin Chao*, Huijuan Wanga,b, Yongbin Zhanga, Caixia Yinc, Fangjun Huoa, Jinyu Sund, Minggen Zhaod

a Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, P.R. China

b School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China

c Institute of Molecular Science, Shanxi University, Taiyuan 030006, China

d School of Chemistry and Chemical Engineering, Xinzhou Teachers University, Xinzhou 034000, China
1. Cytotoxicity assays in cells

2. Method for determination of the fluorescence quantum yield

3. Figures captions:

Fig. S1. 1H NMR spectra of probe in DMSO-d$_6$.

Fig. S2. 13C NMR spectra of probe in DMSO-d$_6$.

Fig. S3. HRMS spectra of probe.

Fig. S4. HRMS spectra of probe - HSO$_3^-$.

Fig. S5 (a) The ratios of fluorescence intensity of probe (15.0 µM) containing diverse species in CH$_3$CN/ H$_2$O (1/3, V/V) at pH 7.10 and pH 4.00. Conditions: $\lambda_{ex} = 370$ nm, Ex/Em slit = 5/5 nm. (b) Fluorescence responses (455 nm) of probe (15.0 µM) containing diverse species in CH$_3$CN/ H$_2$O (1/19, V/V) at pH 7.10 and 8.50. Conditions: $\lambda_{ex} = 370$ nm, Ex/Em slit = 2.5/5 nm. Ca$^{2+}$ (10 mM); Na$^+$ (150 mM); K$^+$ (150 mM); other metal ions with 0.2 mM, cysteine (1 mM); homocysteine (1 mM); glutathione (1 mM); glycine (1 mM); valine (1 mM); arginine (1 mM); lysine (1 mM); tyrosine (1 mM).

Fig. S6 (a) Time courses of fluorescence emission ratios I$_{460 \text{ nm}}$/I$_{414 \text{ nm}}$ in various pH values (7.10, 4.50 and 2.50, respectively). Conditions: $\lambda_{ex} = 370$ nm, Ex/Em slit = 5/5 nm. (b) Changes in the fluorescence intensity at 455 nm for probe (15.0 µM) in CH$_3$CN/ H$_2$O (1/19, V/V) at pH 7.40, 10.30, 12.30, respectively. Conditions: $\lambda_{ex} = 370$ nm, Ex/Em slit = 2.5/5 nm.

Fig. S7 (a) Reversible changes in the fluorescence emission ratio (I$_{460 \text{ nm}}$/I$_{414 \text{ nm}}$) for probe (15.0 µM) in CH$_3$CN/H$_2$O (1/3, v/v) system between pH 7.10 and 1.36. Conditions: $\lambda_{ex} = 370$ nm, Ex/Em slit = 5/5 nm. (b) Changes in the fluorescence intensity of probe (15.0 µM) in CH$_3$CN/H$_2$O (1/19, v/v) system at
455 nm between pH 7.10 and 13.09. Conditions: $\lambda_{ex} = 370$ nm, Ex/Em slit = 2.5/5 nm.

Fig. S8 Effect of pH on the fluorescent intensity of probe addition reaction system by bisulfite.

Fig. S9 Time-dependent fluorescence spectra of probe (15.0 µM) with HSO$_3^-$ (50.0 nM) in PBS buffer (pH = 5.00, 1.5% DMSO). Conditions: $\lambda_{ex} = 420$ nm, Ex/Em slit = 5/10 nm.

Table S1 Comparison of probe with the reported fluorescence probes for HSO$_3^-$.

Fig. S10 The fluorescence intensity of probe (15.0 µM) with HSO$_3^-$ (70.0 nM) and other various analytes (100 equiv.) in the PBS buffer (pH = 5.00, 1.5% DMSO). Conditions: $\lambda_{ex} = 420$ nm, Ex/Em slit = 5/10 nm.

Fig. S11 Fluorescence intensity of probe (15.0 µM) at 555 nm in PBS buffer (pH = 5.00, 1.5% DMSO) to various anions (30 equiv.), and it’s competition graph with bisulfite. Black bar: probe + various species. Red bar: probe + various species + bisulfite. $\lambda_{ex}/\lambda_{em} = 420/555$ nm. Ex/Em slit = 5/10 nm.

Fig. S12 Partial 1H NMR spectrum of probe and probe - OH$^-$ in DMSO-d6.

Figure S13 (a) Absorbance spectral changes of probe in DMSO, upon increasing the concentration of water (0-100%) (Note: the spectra were taken after 18 hours). (b) Fluorescence spectra of probe in DMSO upon increasing the concentration of water from 0% to 100%. (Note: the spectra were taken after 18 hours).

Figure S14 (a) Absorbance spectral changes of probe in CH$_3$CN, upon increasing the concentration of water (0-100%) (Note: the spectra were taken after 18 hours). (b) Fluorescence spectra of probe in CH$_3$CN upon increasing the concentration of water from 0% to 100%. (Note: the spectra were taken after 18 hours).

Table S2 The quantum yield (Φ) of probe in DMSO upon increasing the concentration of water
from 0 % to 100%.

Table S3 The quantum yield (Φ) of probe in CH$_3$CN upon increasing the concentration of water from 0 % to 100%.

Fig S15 Cytotoxicity data results obtained from the MTT assay.
1. Cytotoxicity assays in cells

The A549 cells were maintained in a humidified atmosphere containing 5% CO₂ at 37 °C in DMEM supplemented with 100 units of penicillin, 100 μg mL⁻¹ of streptomycin, and 10% fetal bovine serum. The cytotoxicity (IC50) of probe was determined using a MTT assay, a standard method to detect cell survival fraction, by incubating A549 cells. Briefly, the cells with a density of 1×10⁴ cells well⁻¹ were cultured in 96-well glass-bottom plates for 48 h under 5% CO₂. Then the cells were incubated with various concentrations of probe (0, 1, 5, 10, 15, 20, 40, 60, 80, 100 μM) for 12h. At least six parallel samples were created in each group. After that, the suspension medium was removed and 10 μL (5 mg/mL in PBS pH = 7.40) MTT (5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide) was added to each well and performed for 4 h. When the incubation was finished, culture supernatants were aspirated away and purple formazan crystals were dissolved into 150 μL of DMSO for additional incubation of 15 min, China). The cell viability was estimated according to the following equation:

Inhibition rate (IR %) = [OD (control) – OD (drug treated cell)]/ [OD(control)] × 100%

2. Method for determination of the fluorescence quantum yield

For determination fluorescence quantum yields (Φ) of probe, the quinine sulphate in 0.1 M H₂SO₄ solution was used as a fluorescence standard. The fluorescence quantum yields (Φ) were obtained using the following equation:

$$\Phi = \Phi_{\text{ref}} \times \frac{F_{\text{sample}}}{F_{\text{ref}}} \times \frac{A_{\text{ref}}}{A_{\text{sample}}} \times \frac{\eta_{\text{sample}}}{\eta_{\text{ref}}}$$

where sample and ref indicated the unknown and standard solution, respectively. $\Phi = $ quantum at the exaction wavelength, and $\eta = $ refractive index of the solvent. Here Φ_{ref} measurements were performed using quinine sulphate in 0.1 M H₂SO₄ as a standard [$\Phi = 0.546$].
3. Figures captions:
Fig. S1. 1H NMR spectra of probe in DMSO-d$_6$.
Fig. S2. 13C NMR spectra of probe in DMSO-d$_6$.
Fig. S3. HRMS spectra of probe.

Fig. S4. HRMS spectra of probe - HSO$_3^−$.

Calculated m/z = 334.12264

Obtained m/z = 334.12323

Calculated m/z = 415.08783

Obtained m/z = 415.08704
Fig. S5 (a) The ratios of fluorescence intensity of probe (15.0 µM) containing diverse species in CH$_3$CN/ H$_2$O (1/3, V/V) at pH 7.10 and pH 4.00. Conditions: $\lambda_{ex} = 370$ nm, Ex/Em slit = 5/5 nm.

(b) Fluorescence responses (455 nm) of probe (15.0 µM) containing diverse species in CH$_3$CN/ H$_2$O (1/19, V/V) at pH 7.10 and 8.50. Conditions: $\lambda_{ex} = 370$ nm, Ex/Em slit = 2.5/5 nm. Ca$^{2+}$ (10
mM); Na$^+$ (150 mM); K$^+$ (150 mM); other metal ions with 0.2 mM, cysteine (1 mM); homocysteine (1 mM); glutathione (1 mM); glycine (1 mM); valine (1 mM); arginine (1 mM); lysine (1 mM); tyrosine (1 mM).
Fig. S6 (a) Time courses of fluorescence emission ratios $I_{460\text{ nm}}/I_{414\text{ nm}}$ in various pH values (7.10, 4.50 and 2.50, respectively). Conditions: $\lambda_{ex} = 370$ nm, Ex/Em slit = 5/5 nm. (b) Changes in the fluorescence intensity at 455 nm for probe (15.0 µM) in CH$_3$CN/ H$_2$O (1/19, V/V) at pH 7.40, 10.30, 12.30, respectively. Conditions: $\lambda_{ex} = 370$ nm, Ex/Em slit = 2.5/5 nm.

![Graph](image)

Fig. S7 (a) Reversible changes in the fluorescence emission ratio ($I_{460\text{ nm}}/I_{414\text{ nm}}$) for probe (15.0 µM) in CH$_3$CN/ H$_2$O (1/19, V/V) at pH 7.10, 13.09. Conditions: $\lambda_{ex} = 370$ nm, Ex/Em slit = 5/5 nm.
μM) in CH$_3$CN/H$_2$O (1/3, v/v) system between pH 7.10 and 1.36. Conditions: $\lambda_{ex} = 370$ nm, Ex/Em slit = 5/5 nm. (b) Changes in the fluorescence intensity of probe (15.0 μM) in CH$_3$CN/H$_2$O (1/19, v/v) system at 455 nm between pH 7.10 and 13.09. Conditions: $\lambda_{ex} = 370$ nm, Ex/Em slit = 2.5/5 nm.

Fig. S8 Effect of pH on the fluorescent intensity of probe addition reaction system by bisulfite.
Fig. S9 Time-dependent fluorescence spectra of **probe** (15.0 µM) with HSO$_3^-$ (50.0 nM) in PBS buffer (pH = 5.00, 1.5% DMSO). Conditions: $\lambda_{ex} = 420$ nm, Ex/Em slit = 5/10 nm.
Table S1 Comparison of probe with the reported fluorescence probes for HSO$_3^-$:

<table>
<thead>
<tr>
<th>Probe</th>
<th>Response time</th>
<th>Detection limit</th>
<th>Solution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 min</td>
<td>100 nM</td>
<td>Water-DMSO (99/1, V/V)</td>
<td>Dyes Pigments, 2017 2</td>
</tr>
<tr>
<td></td>
<td>a few minutes</td>
<td>28200 nM</td>
<td>Britton-Robinson buffer (20 mM, pH 7)-DMSO (99/1, V/V)</td>
<td>Sens Actuators B:Chemica, 2017 3</td>
</tr>
<tr>
<td></td>
<td>7.7 min</td>
<td>3060 nM</td>
<td>Sugar (5.0 g per/100 ML)</td>
<td>Talanta, 2017 4</td>
</tr>
<tr>
<td></td>
<td>20 min</td>
<td>100 nM</td>
<td>HEPES (10 mM, pH 7.40) THF/H$_2$O (1/1, V/V)</td>
<td>Dyes Pigments, 2017 5</td>
</tr>
<tr>
<td>Time</td>
<td>Final Concentration</td>
<td>Buffer</td>
<td>Journal, Year</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>1 h</td>
<td>300 nM</td>
<td>PBS buffer (20 mM) Containing 1mM CTAB</td>
<td>Ana. Chim. Acta, 2013</td>
<td></td>
</tr>
<tr>
<td>5 min</td>
<td>1.9 nM</td>
<td>PBS (pH 5, 1.5% DMSO)</td>
<td>This work</td>
<td></td>
</tr>
</tbody>
</table>
Fig. S10 The fluorescence intensity of **probe** (15.0 µM) with HSO$_3^-$ (70.0 nM) and other various analytes (100 equiv.) in the PBS buffer (pH = 5.00, 1.5% DMSO). Conditions: $\lambda_{ex} = 420$ nm, Ex/Em slit = 5/10 nm.
Fig. S11 Fluorescence intensity of **probe** (15.0 µM) at 555 nm in PBS buffer (pH = 5.00, 1.5% DMSO) to various anions (30 equiv.), and it’s competition graph with bisulfite. Black bar: **probe** + various species. Red bar: **probe** + various species + bisulfite. $\lambda_{ex}/\lambda_{em} = 420/555$ nm. Ex/Em slit = 5/10 nm.
Fig. S12 Partial 1H NMR spectrum of probe and probe - OH$^-$ in DMSO-d$_6$.

S22
Figure S13 (a) Absorbance spectral changes of probe in DMSO, upon increasing the concentration of water (0-100%) (Note: the spectra were taken after 18 hours). (b) Fluorescence spectra of probe in DMSO upon increasing the concentration of water from 0%
to 100%. (Note: the spectra were taken after 18 hours).

Figure S14 (a) Absorbance spectral changes of probe in CH$_2$CN, upon increasing the concentration of water (0-100%) (Note: the spectra were taken after 18 hours). (b)
Fluorescence spectra of probe in CH$_3$CN upon increasing the concentration of water from 0 % to 100%. (Note: the spectra were taken after 18 hours).

Table S2 The quantum yield (Φ) of probe in DMSO upon increasing the concentration of water from 0 % to 100%.

<table>
<thead>
<tr>
<th>f_w</th>
<th>0%</th>
<th>20%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
<th>75%</th>
<th>80%</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ</td>
<td>0.078</td>
<td>0.060</td>
<td>0.081</td>
<td>0.109</td>
<td>0.173</td>
<td>0.199</td>
<td>0.121</td>
<td>0.065</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Table S3 The quantum yield (Φ) of probe in CH$_3$CN upon increasing the concentration of water from 0 % to 100%.

<table>
<thead>
<tr>
<th>f_w</th>
<th>0%</th>
<th>20%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
<th>75%</th>
<th>80%</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ</td>
<td>0.029</td>
<td>0.050</td>
<td>0.061</td>
<td>0.066</td>
<td>0.090</td>
<td>0.106</td>
<td>0.100</td>
<td>0.054</td>
<td>0.013</td>
</tr>
</tbody>
</table>
Fig. S15 Cytotoxicity data results obtained from the MTT assay.
References

