Synthesis, Structures and Magnetic Properties of linear \{\text{Co}^{II}_2\text{Ln}^{III}_2\} Coordination Clusters

Sihuai Chen,a Valeriu Mereacre,b Zhiying Zhao,a Wanwan Zhang,a,c Zhangzhen Hea* \\

a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. \\
b KIT Steel and Lightweight Structures, Research Center for Steel, Timber and Masonry, Karlsruhe Institute of Technology, Otto-Ammann-Platz 1, 76131 Karlsruhe, Germany. \\
c University of the Chinese Academy of Sciences, Beijing, 100039, P. R. China.

Supporting Information

\textbf{Fig. S1} Thermal ellipsoid representation (50% probability) of the molecular structure of compound 1.
Fig. S2 Temperature dependence of the in-phase (χ') (left) and out-of-phase (χ'') (right) ac susceptibility components at the indicated frequencies under zero dc field for 1.

Fig. S3 Frequency dependence of the in-phase (χ') (left) and out-of-phase (χ'') (right) ac susceptibility components under indicated dc fields at 2 K for 1.
Fig. S4 Cole-Cole plots under 2500 Oe dc field for compound 1.

Fig. S5 Arrhenius plot using ac data for compound 1. The solid line is the fit of the thermally activated region.