Electronic Supplementary Information

Axially substituted phosphorous(V) corrole with polycyclic aromatic hydrocarbons: Synthesis, X-ray structure, and photoinduced energy and electron transfer studies

B. Shivaprasad Achary,a A.R. Ramya,a Jagadeesh Babu Nanubolu,b Sairaman Seetharaman,c Gary N. Lim,c Youngwoo Jang,c Francis D’Souza,c* and Lingamallu Giribabu*a

aInorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500 007, Telangana, India

bLaboratory of X-ray Crystallography CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500 007, Telangana, India

cDepartment of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA.

E-mail: giribabu@iict.res.in(LG); francis.dsouza@unt.edu(FD)
Table of contents

Figure S1. 1H NMR of Triad 1... 3
Figure S2. 1H NMR of Triad 2... 3
Figure S3. 31P NMR of P(ptfc)(OH)$_2$, Triad 1 and 2....................... 4
Figure S4. HRMS mass spectra of Triad 1.. 5
Figure S5. HRMS mass spectra of Triad 2.. 5
Figure S6. Crystal Packing of Triad 1 ... 6
Figure S7. Theoretical absorption spectra of Triads 1 and 2................. 7
Figure S8. Cyclic voltammograms of Triad 1 and 2............................... 8
Figure S9. Emission spectra of P(ptfc)(OH)$_2$, Triads 1 and 2 at $\lambda_{ex} = 410$ nm (a) toluene (b) DMSO (c) PhCN... 9
Figure S10. Fluorescence spectra of naphthalene and Triad 1 ($\lambda_{ex} = 275$ nm) and pyrene and Triad 2 ($\lambda_{ex} = 336$ nm) in toluene and DMSO.......... 9
Figure S11. Overlay of the excitation and absorption spectra of Triad 1 and Triad 2 in CH$_2$Cl$_2$ ($\lambda_{em} = 588$ nm).. 10
Figure S12. Fluorescence decay curves of P(ptfc)(OH)$_2$, Triad 1 and Triad 2 in DCM .. 11
Figure S13. Femtosecond transient spectra recorded at a delay time of 2.74 ns of (i) PC and (b) Triad 2 in PhCN................................. 12
Figure S14. Energies of the singlet and charge-transfer states of triads....... 13
Table S1. Comparison of experimental optical properties with singlet excited state properties of Triads by B3LYP in DCM......................... 14
Figure S1. 1H NMR spectrum of triad 1

Figure S2. 1H NMR spectrum of triad 2.
Figure S3. 31P spectra of the indicated compounds
Figure S4. HRMS spectrum of triad 1

Figure S5. HRMS spectrum of triad 2
Figure S6. View of Traid 1 showing the intermolecular hydrogen bonding interactions involving C55–H55 of the naphthyl moiety and F9 of the pentafluorophenyl group forming a 1D array.
Figure S7. Theoretical absorption spectra of (a) Triad 1, and (b) Triad 2 in DCM solvent.
Figure S8. Cyclic voltammograms of triad 1 and triad 2 in 0.1 M TBAP solution in DCM
Figure S9. Emission spectra of P(tpfc)(OH)$_2$, **triads** 1 and 2 at $\lambda_{ex} = 410$ nm in (a) Toluene (b) DMSO (c) PhCN.
Figure S10. Fluorescence spectra of naphthalene and triad 1 ($\lambda_{ex} = 275$ nm) and pyrene and triad 2 ($\lambda_{ex} = 336$ nm) in toluene and DMSO.
Figure S11. Overlay of the excitation and absorption spectra of Triad 1 and Triad 2 in CH$_2$Cl$_2$ ($\lambda_{em} = 588$ nm).
Figure S12. Fluorescence decay curves of P(tpfc)(OH)_2, triads 1 and 2 in DCM.
Figure S13. Femtosecond transient spectra recorded at a delay time of 2.74 ns of (i) PC and (b) Triad 2 in PhCN.

Figure S14. Energies of the singlet and charge-transfer states of triads.
Table S1. Comparison of experimental optical properties with singlet excited state properties of dyads by B3LYP in DCM solvent.

<table>
<thead>
<tr>
<th>Compound</th>
<th>λ_{max}^a</th>
<th>λ_{max}^b</th>
<th>f^c</th>
<th>E^d</th>
<th>% of molecular orbital composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triad 1</td>
<td>580</td>
<td>535</td>
<td>0.1202</td>
<td>2.31</td>
<td>H-1->L+1 (22%), HOMO->LUMO (76%)</td>
</tr>
<tr>
<td>Triad 2</td>
<td>584</td>
<td>624</td>
<td>0.0145</td>
<td>1.98</td>
<td>HOMO->LUMO (98%)</td>
</tr>
</tbody>
</table>

aRecorded absorbance in nm, bTheoretical absorbance in nm, cOscillation strength, and dExcited state energy in eV.