Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Fabrication and enhanced hydrogen evolution reaction

performance of a Cu₃BiS₃ nanorods/TiO₂ heterojunction film

Jiajia Li,^{a,b} Xiuxun Han,^{a,c*} Min Wang,^{a,b} Yun Zhao^{a,b} and Chen Dong^{a,b}

- a. Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
- b. University of Chinese Academy of Sciences, Beijing 100039, P. R. China.
- c. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000, P. R. China.
- * E-mail address: xxhan@licp.cas.cn

Fig. S1 The digital photos of as-prepared samples (a) after the preparation, (b) in the process of electrochemical test and (c) a self-made photo-reactor.

Fig. S2 The plot of $(\alpha hv)^2$ versus hv for the Cu₃BiS₃ film.

Fig. S3 XRD patterns of Cu₃BiS₃ film and C@T heterojunction film after photoelectrochemical hydrogen evolution tests.

Mott-Schottky analysis

The capacitance–potential measurement are presented as a M-S plot following the equation below^{1,2}:

$$\frac{1}{C^2} = \frac{2}{\varepsilon_0 \varepsilon e N_A A^2} \left(V - V_{fb} - \frac{k_B T}{e} \right) \tag{1}$$

In equation (1) above, C is the space-charge capacitance of the semiconductor, ε_0 is the permittivity in vacuum, ε is the dielectric constant of Cu₃BiS₃, *e* is the electronic charge, V_{fb} is the flat-band potential, V is the applied potential, N_A is the number density of acceptors in Cu₃BiS₃, T is the absolute temperature, A is area of the electrode and k_B is the Boltzmann constant. The flat band potential (V_{fb}) is determined (equation (2) below) after the thermal correction (k_BT/*e*) of the intercept (V₀) which is estimated from extrapolating the linear part of the curve to $1/C^2$ equals to zero on the potential axis:

$$V_{fb} = V_0 + \frac{k_B}{e} \tag{2}$$

Fig. S4 Mott-Schottky plot of Cu₃BiS₃ nanorods film, and the flat-band potential is obtained from the intercept of the extrapolated line.

References

- [1] A. A. Dubale, W. N. Su, A. G. Tamirat, C. J. Pan, B. A. Aragaw,H. M. Chen, C. H. Chen and B. J. Hwang, *J. Mater. Chem. A*,
- 2014, **2**, 18383.
- [2] H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X.
- Zhang, L. Lei and S. Jin, *Energy Environ. Sci.*, 2016, 9, 3113.