Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Rapid synthesis of CdS nanowire mesh via simplistic wet chemical route and their NO₂ gas sensing properties

Sharadrao A.Vanalakar^{1,2*}, Vithoba L. Patil², Pramod S. Patil³, Jin H. Kim^{1*}

¹Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757, South Korea ²Department of Physics, Karmaveer Hire Arts, Science, Commerce and Education College, Gargoti 416-009, India ³Department of Physics, Shivaji University, Kolhapur 416-009, India

Supplementary Information

Fig. (S1): I-V characteristics of Ag-CdS (sample CdS:20)

Fig. (S2): XPS spectra of all CdS thin film samples (a) Cd spectrum and (b) S spectrum

Fig. (S3): The room temperature optical absorption spectrum of all CdS thin films. Inset shows the optical band gap energy spectra.

Fig. (S4): The steady state region of resistance versus time graphs for sample CdS:20 at 200 ^oC in (a) 20 ppm, (b) 40 ppm, (c) 60 ppm, (d) 80 ppm.

Fig. (S5): Variation of log (ρ) as a function of inverse of temperature of all CdS thin film samples annealed at 150 °C. Following figure shows that, the electrical resistivity decreases with increase in temperature.

Fig. (S6) The SEM images of annealed CdS thin films samples (a1 and 2) CdS:10, (b1 and 2) CdS:20 and (c1 and 2) CdS:30. The CdS thin films were annealed at 150 ^oC.

Fig. (S7): The resistance versus time graphs for sample CdS:20 at 200 ^oC in (a) NH₃, (b) SO₂, (c) acetone, (d) LPG