Exploring and exploiting different catalytic systems for the direct conversion of cellulose into levulinic acid

Cinzia Chiappea,*, Maria Jesus Rodriguez Doutona, Andrea Mezzettaa, Lorenzo Guazzelli, Christian Silvio Pomelli, Giulio Assanelli, Alberto Renato de Angelisb,*

Supporting Information

Table of contents

Catalysts screened page S2
Effect of the temperature on levulinic acid yield with (MepyrrH)(HSO₄) page S3
Effect of reaction time on levulinic acid yield with (TMGH)(HSO₄) page S4
Effect of TiOSO₄·xH₂O loading on levulinic acid yield page S5
FTIR spectrum of a) commercial TiOSO₄·xH₂O and b) hydrolyzed TiOSO₄·xH₂O page S6
Thermal gravimetric analysis (TGA) of commercial TiOSO₄·xH₂O and hydrolyzed TiOSO₄·xH₂O page S7
IR spectra of solid products pages S8-S12
Figure S1 Catalysts tested in this work.
Figure S2 Effect of the temperature on LA yield (mol%). Reaction conditions: (MepyrrH)(HSO₄) 6 g, H₂O 15 g, CO₂ 12 bar, 3, 5 or 5 wt% MCC (red and blue, respectively), 4 h.
Figure S3. Effect of reaction time on LA and HMF yield (mol%). Reaction conditions: (TMGH)(HSO₄) 6 g, H₂O 15 g, CO₂ 12 bar, 5 wt% MCC, 180 °C.
Figure S4. Effect of catalyst loading on LA yield (mol%). Reaction conditions: catalyst TiOSO₄, H₂O 40 mL, 2.5 wt% CFP, 195°C, 4h.
Figure S5 FTIR spectrum of a) commercial TiOSO₄⋅xH₂O and b) hydrolyzed TiOSO₄⋅xH₂O under reaction conditions.
Figure S6 Thermal gravimetric analysis (TGA) of commercial TiOSO₄·xH₂O and hydrolyzed TiOSO₄·xH₂O.
Figure S7 IR spectra of MCC
Figure S8 IR spectra of unreacted cellulose
Figure S9 IR spectra of mixture metals derived Humins/unreacted cellulose
Figure S10 IR spectra of mixture metals derived Humins
Figure S11 IR spectra of ILs derived Humins.