ON THE INTERACTIONS OF TEMPO RADICALS WITH GOLD NANOSTRUCTURES

Carolina Aliaga1,2,*, Sebastián Michea2, Camila Pastenes1, Javier Salazar3, and Marcos Caroli Rezende1,*

1 Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago de Chile.

2Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA.

3Universidad Andrés Bello, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Av Republica 239, Santiago, Chile

\textbf{Figure 1-} Epr spectrum of 4-aminoTEMPO 1 in water at a concentration of 1 μM employing the following operating conditions; microwave power: 1 mW; field modulation, 100 kHz; modulation amplitude, 5 G; time constant, 10.24 ms; and conversion time, 40.96 ms. When a 0.16 G amplitude modulation was used, as in reference 7, no spectral changes were observed.
Figure 2 - Absorption spectra of 4-aminoTEMPO 1 in water at increased concentrations (5-30mM).

Figure 3 – Left: decay with time of the intensity of the first signal of the epr triplet of 1 (50 μM) in the presence of AuNC ([HAuCl₄] = 0.8 μM), after addition of 10 mM of Trolox. The corresponding linear plot for obtaining the k_{obs} value is shown in the inset. Right: EPR signal of compound 1 (50 μM) in the presence of AuNC ([HAuCl₄] = 0.8 μM), after addition of Trolox (10 mM), at time zero and after 600 s of reaction.