New Journal of Chemistry

Supplementary Data

Synthesis of Benzyl Hydrazine Derivatives via Amination of Benzylic C (sp3)–H Bonds with Dialkyl Azodicarboxylates

A. Samzadeh-Kermani

Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran

Fax +98-61-335856; E-mail: drsamzadeh@gmail.com; arsamzadeh@uoz.ac.ir

Contents

(A) Study of possible mechanism
(B) Reaction of xylene derivatives in the absence of ligand
(C) Original ¹H & ¹³C-NMR Spectra
(A) Study of possible mechanism

Some additional experiments performed to explore the possible reaction pathway of the present transformation:

1. Firstly, Radical scavenger such as TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) completely inhibits the model reaction which indicate that the transformation may proceed via a radical intermediate.

![Reaction Scheme 1]

2. In the absence of toluene, only a traces amount of 4 was obtained, which can further support a radical pathway. suggest that styrene radical is not formed in the reaction system. It is worth mentioning that no products arising from the self-coupling of 2a was observed.

![Reaction Scheme 2]

3. Competing Kinetic Isotope Effect (KIE) Experiment: an intermolecular competing kinetic isotope effect (KIE) experiment was carried out.

![NMR Spectra]

1HNMR of the mixture of 3a and 3a'
Note: The value of k_H/k_D was calculated from the 1H NMR spectra above which should be the mixture of compound 3a and 3a’ (the KIE scheme). The sum of the integral of 3a and 3a’ at chemical shift 4.97-5.05 was integrated as 2.00 (both 3a and 3a’ keep almost the same multiple bond hydrogens). Compound 3a has 2 hydrogen atoms at chemical shift 4.44, while 3a’ has no H atoms. The amount of 3a could be defined as 0.82 (1.64/2=0.82), on the other hand, the sum of 3a and 3a’ is 2.00 (signal at 4.97-5.05, 2 CH), so the amount of 3a’ is 0.18 (2.00/2-0.82=0.18). As a result, $k_H/k_D = 0.82/0.18 = 4.6$.
(B) Reaction of xylene derivatives in the absence of ligand

Table 1. Examination of double amination of sp3 C-H with 2a

<table>
<thead>
<tr>
<th>Entry</th>
<th>1</th>
<th>Yield (%)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>4-Me</td>
<td>3b, 85</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>3-Me</td>
<td>3c, 83</td>
</tr>
<tr>
<td>3</td>
<td>d</td>
<td>2-Me</td>
<td>3d, 53</td>
</tr>
</tbody>
</table>

a Reaction conditions: 1 (2.0 mL), 2a (1.0 mmol), Cu₂O (0.10 mmol), Phen (0.06 mmol), DTBP (1.5 mmol), 4 Å MS (300 mg), 110 °C for 28 h, in a sealed tube under an argon atmosphere.

b Reaction conditions: 1 (2.0 mL), 2a (1.0 mmol), Cu₂O (0.10 mmol), DTBP (1.5 mmol), 4 Å MS (300 mg), 110 °C for 28 h, in a sealed tube under an argon atmosphere.

c The digit in parenthesis belong to the double amination product.
(C) Original 1H & 13C-NMR Spectra
New Journal of Chemistry
New Journal of Chemistry
New Journal of Chemistry

![Chemical Structure](image)

Bruker

Parameters

- **Sample Name**: 3m
- **Solvent**: DMSO-d6
- **Temperature**: 298 K
- **Field Strength**: 600 MHz
- **Frequency**: 270.08 MHz
- **GAIN**: 6.36 dB
- **TE**: 300.0 μs
- **TR**: 3.6 s
- **CP**: 40.490 kHz
- **D1**: 5.60000 MHz

NMR Plot Parameters

- **Chemical Shifts**:
 - 2.00 ppm
 - 3.00 ppm
 - 4.00 ppm
 - 5.00 ppm
 - 6.00 ppm

Data

- **Time**: 32.27
- **INSTAN**: nore
- **PREM**: 8 nm NaCl
- **PEAKS**: 40
- **TE**: 300.0 μs
- **GAIN**: 6.36 dB
- **D1**: 5.60000 MHz

Additional Notes

- **Notes on Analysis**
- **Experimental Conditions**
- **Data Interpretation**