Electronic Supporting Information for:

A comparison of optical, electrochemical and self-assembling properties of two structural isomers based on 1,6- and 1,8-pyrenedione chromophores

Samantha N. Keller, and Todd. C. Sutherland*

Table of contents:

Figure 1. 1H and 13C NMR of 3 ... 2
Figure 2. 1H and 13C NMR of 4 ... 3
Figure 3. 1H and 13C NMR of 5 ... 4
Figure 4 1H and 13C NMR of 6 ... 5
Figure 5 1H and 13C NMR of 7 ... 6
Figure 6. 1H and 13C NMR of 8 ... 7
Figure 7. 1H and 13C NMR of 16ketPyr ... 8
Figure 8. 1H and 13C NMR of 18ketPyr ... 9
Figure 9. DPVs of 16ketPyr and 18ketPyr in CH$_2$Cl$_2$ solution with 0.05M NBu$_4$PF$_6$ electrolyte. Measurements were taken with a Pt button working electrode, Ag wire reference electrode, and Pt wire counter electrode. 10
Figure 10. CVs of 16ketPyr and 18ketPyr in CH$_2$Cl$_2$ solution with 0.05M NBu$_4$PF$_6$ electrolyte. Measurements were taken with a scan rate of 20 mV s$^{-1}$ using a glassy carbon working electrode, Ag wire reference electrode, and Pt wire counter electrode. .. 10
Figure 11. Spectroelectrochemical studies of (a) 16ketPyr and (b) 18ketPyr in CHCl$_3$ as a function of applied potential. Initial spectra (0 V applied) are dotted lines, and final spectra are solid black lines. Application of -700 mV vs Ag wire quasi reference. ... 11
Figure 12. Molecular orbital energy levels and surfaces calculated for compounds 16ketPyr (left) and 18ketPyr (right). Surfaces calculated at the B3LYP/6-31+g(d) level of theory and basis set, and energy levels obtained by single point TD-DFT calculations at the same level of theory and basis set, including the PCM solvent model in chloroform... 11
Table 1. Allowed transitions calculated with TD-DFT for compounds 16ketPyr and 18ketPyr 12
Figure 1. 1H and 13C NMR of 3

$R_1^1 - R_2^2 - R_3^3 - R_4^4$

$3 \ R_1^1 = \text{OTIPS}, \ R_2^4 = \text{H}$

$\begin{array}{c}
\text{Chemical Shift (ppm)}
\end{array}$

$\begin{array}{c}
0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7
\end{array}$

$\begin{array}{c}
1.91 \ 2.10 \ 2.09 \ 2.08
\end{array}$

$\begin{array}{c}
6.35 \ 37.34
\end{array}$

$\begin{array}{c}
\text{Chemical Shift (ppm)}
\end{array}$

$\begin{array}{c}
190 \ 180 \ 170 \ 160 \ 150 \ 140 \ 130 \ 120 \ 110 \ 100 \ 90 \ 80 \ 70 \ 60 \ 50 \ 40 \ 30 \ 20 \ 10
\end{array}$

$\begin{array}{c}
126.7 \ 125.1 \ 124.7 \ 123.0 \ 121.0 \ 116.2
\end{array}$

$\begin{array}{c}
150.0
\end{array}$

$\begin{array}{c}
18.3 \ 13.4
\end{array}$
Figure 2. 1H and 13C NMR of 4
Figure 3. 1H and 13C NMR of 5
Figure 4. \(^1\)H and \(^{13}\)C NMR of 6

\[\text{R}^1 \quad \text{R}^2 \]
\[\text{R}^3 \quad \text{R}^4 \]

\(6 \text{ R}^1,4 = \text{OTIPS}; \text{R}^2,3 = \text{Br}\)
Figure 5 \(^1\)H and \(^{13}\)C NMR of 7

7 \(R^{1,3}\) = OTIPS; \(R^{2,4}\) = donor

Chemical Shift (ppm)

Chemical Shift (ppm)
Figure 6. 1H and 13C NMR of 8

a $R^{1,4} =$ OTIPS, $R^{3,3} =$ donor

8 $R^{1,4} =$ OTIPS, $R^{3,3} =$ donor
Figure 7. 1H and 13C NMR of 16ketPyr
Figure 8. 1H and 13C NMR of 18ketPyr
Figure 9. DPVs of 16ketPyr and 18ketPyr in CH₂Cl₂ solution with 0.05 M NBu₄PF₆ electrolyte. Measurements were taken with a Pt button working electrode, Ag wire reference electrode, and Pt wire counter electrode.

Figure 10. CVs of 16ketPyr and 18ketPyr in CH₂Cl₂ solution with 0.05 M NBu₄PF₆ electrolyte. Measurements were taken with a scan rate of 20 mV s⁻¹ using a glassy carbon working electrode, Ag wire reference electrode, and Pt wire counter electrode.
Figure 11. Spectroelectrochemical studies of (a) 16ketPyr and (b) 18ketPyr in CHCl₃ as a function of applied potential. Initial spectra (0 V applied) are dotted lines, and final spectra are solid black lines. Application of -700 mV vs Ag wire quasi reference.

Figure 12. Molecular orbital energy levels and surfaces calculated for compounds 16ketPyr (left) and 18ketPyr (right). Surfaces calculated at the B3LYP/6-31+g(d) level of theory and basis set, and energy levels obtained by single point TD-DFT calculations at the same level of theory and basis set, including the PCM solvent model in chloroform.
Table 1. Allowed transitions calculated with TD-DFT for compounds \textbf{16ketPyr} and \textbf{18ketPyr}.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Major Transition</th>
<th>Wavelength (nm)</th>
<th>Energy (eV)</th>
<th>Oscillator Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textbf{16ketPyr}</td>
<td>HOMO - LUMO (100%)</td>
<td>788</td>
<td>1.57</td>
<td>0.6615</td>
</tr>
<tr>
<td></td>
<td>HOMO-2 - LUMO (91%)</td>
<td>481</td>
<td>2.57</td>
<td>0.5941</td>
</tr>
<tr>
<td></td>
<td>HOMO-1 - LUMO+1 (7%)</td>
<td>411</td>
<td>3.02</td>
<td>0.4796</td>
</tr>
<tr>
<td></td>
<td>HOMO-5 - LUMO (37%)</td>
<td>391</td>
<td>3.17</td>
<td>0.2891</td>
</tr>
<tr>
<td></td>
<td>HOMO-9 - LUMO (8%)</td>
<td>418</td>
<td>2.96</td>
<td>0.0527</td>
</tr>
<tr>
<td></td>
<td>HOMO-3 - LUMO+1 (9%)</td>
<td>406</td>
<td>3.05</td>
<td>0.7381</td>
</tr>
<tr>
<td>\textbf{18ketPyr}</td>
<td>HOMO - LUMO (100%)</td>
<td>789</td>
<td>1.57</td>
<td>0.2106</td>
</tr>
<tr>
<td></td>
<td>HOMO-1 - LUMO (100%)</td>
<td>748</td>
<td>1.66</td>
<td>0.3135</td>
</tr>
<tr>
<td></td>
<td>HOMO-2 - LUMO (93%)</td>
<td>504</td>
<td>2.45</td>
<td>0.4615</td>
</tr>
<tr>
<td></td>
<td>HOMO-1 - LUMO+1 (2%)</td>
<td>420</td>
<td>2.95</td>
<td>0.2860</td>
</tr>
<tr>
<td></td>
<td>HOMO-4 - LUMO (56%)</td>
<td>396</td>
<td>3.13</td>
<td>0.0022</td>
</tr>
</tbody>
</table>