Organic molecular nanostructure probes for two-photon imaging of mitochondria and microbes with emission between 430 nm to 640 nm

Xinglong Yang\(^a\), Nuoxin Wang\(^b\), Lingmin Zhang\(^b\), Luru Dai\(^b\), Huawu Shao\(^a,\ast\), and Xingyu Jiang\(^b,\ast\)

\(^a\) Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
\(^b\) CAS Center for Excellence in Nanoscience, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, ZhongGuanCun BeiYiTiao, Beijing, 100190, China
\(^c\) University of Chinese Academy of Science, Beijing, 100049, China

\ast Corresponding authors: Huawu Shao, Email: shaohw@cib.ac.cn, Tel.: +86 028 82890818; Xingyu Jiang, Email: xingyujiang@nanoctr.cn, Tel.: +86-10-82545558

This SI includes the following contents:

1. Experimental details
 - Table S1: Quantum yields of the TPE dots.
2 Fig. S1. AIE ability of TPE-Acr, TPE-Py, and TPE-Quino.
3 Fig. S2. One-photon excited fluorescence (OPEF) spectra with two-photon excited fluorescence (TPEF) spectra of TPE-Acr, TPE-Py, and TPE-Quino dots (A); dynamic light scattering (DLS) analysis of particle sizes (B).
4 Fig. S3. HeLa cells images with TPE-Acr, TPE-Py, and TPE-Quino dots using one-photon excitation.
5 Fig. S4. Washing is not required for TPE dots staining. (A) Fluorescent images of HeLa cells stained by TPE-dots and Mito Tracker Red before and after washing. (B) fluorescence intensity of HeLa cells after washing.
6 Fig. S5. HUVECs and NIH 3T3 cells images with AIE dots using one-photon excitation.
Quantum Yield Measurements

We calculate the quantum yield (Q) of TPE-dots with the following equation. We choose quinine sulfate in 0.1 M H$_2$SO$_4$, fluorescein in water, and rhodamine B in ethanol as standards of TPE-Acr, TPE-Py, and TPE-Quino, respectively. Since Q is the quantum yield, I is the measured integrated emission intensity, n is the refractive index, and A is the optical density. The subscript R refers to the reference fluorophore of known quantum yield.

$$Q = Q_R \frac{I}{I_R} \frac{A_R}{A} \frac{n^2}{n_R^2}$$

<table>
<thead>
<tr>
<th>Sample</th>
<th>Integrated emission intensity (I)</th>
<th>Absorbance (A)</th>
<th>Refractive index of solvent (n)</th>
<th>Quantum yield (Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinine sulfate</td>
<td>41105</td>
<td>0.06</td>
<td>1.33</td>
<td>0.54 (known)</td>
</tr>
<tr>
<td>TPE-Acr</td>
<td>146151</td>
<td>0.18</td>
<td>1.33</td>
<td>0.64</td>
</tr>
<tr>
<td>Fluorescein</td>
<td>84367</td>
<td>0.07</td>
<td>1.33</td>
<td>0.925 (known)</td>
</tr>
<tr>
<td>TPE-Py</td>
<td>158831</td>
<td>0.23</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>Rhodamine B</td>
<td>94310</td>
<td>0.05</td>
<td>1.36</td>
<td>0.97 (known)</td>
</tr>
<tr>
<td>TPE-Quino</td>
<td>227927</td>
<td>0.19</td>
<td>1.33</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Two-photon absorption (TPA) cross-section

We study the two-photon absorption (TPA) spectra of the TPE-dots using a two-photon-induced fluorescence (TPIF) technique with a femtosecond pulsed laser source. A mode locked Ti: Sapphire laser is excitation source with pulses of 100 fs and a repetition rate of 80 MHz. We measure TPA cross-sections (δ) of the dyes in the wavelength range from 700-880 nm. We calculate δ from the following equation:

$$\frac{\delta_2}{\delta_1} = \frac{F_2 Q_1 c_1 n_1}{F_1 Q_2 c_2 n_2}$$

Where δ_1 and δ_2 are the TPA cross-sections, F_1 and F_2 are the TPIF intensities, Q_1 and Q_2 are the fluorescence quantum yields, c_1 and c_2 are the concentrations, n_1 and n_2 are the refractive index of solvents.
Fig. S1. AIE ability of TPE-Acr, TPE-Py, and TPE-Quino. (A) Emission spectra of TPEs in different solvents. Solution concentration: 20 μM. Abbreviation: DMF: dimethylformamide, THF: tetrahydrofuran, EA: ethyl acetate, MeCN: acetonitrile, EtOH: ethanol, DMSO: dimethyl sulfoxide, PBST: phosphate-buffered saline (PBS) with 0.1% Tween 20. (B) Emission spectra of TPEs in THF-PBST mixtures with different PBST fractions (f_{PBST}). Excitation wavelength: 380 nm, 390 nm and 405 nm, respectively.

Fig. S2. One-photon excited fluorescence (OPEF) spectra with two-photon excited fluorescence (TPEF) spectra of TPE-Acr, TPE-Py, and TPE-Quino dots (A); dynamic light scattering (DLS) analysis of particle sizes (B).
Fig. S3. HeLa cells images with (A) TPE-Acr, (B) TPE-Py, and (C) TPE-Quino dots using one-photon excitation.

Fig. S4. Washing is not required for TPE dots staining. (A) Fluorescent images of HeLa cells stained by TPE-dots and Mito Tracker Red before and after washing. (B) fluorescence intensity of HeLa cells after washing.

Fig. S5. HUVECs and NIH 3T3 cells images with AIE dots using one-photon excitation.