Supplementery information

Buoyancy increase and drag-reduction through a simple superhydrophobic coating

Gi Byoung Hwanga, Adnan Patira, Kristopher Pagea, Yao Lua, Elaine Allanb and Ivan P. Parkina*

aMaterials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom

bDivision of Microbial Diseases, UCL Eastman Dental Institute, University College London, 256 Gray’s Inn Road, London WC1X 8LD, United Kingdom

*To whom correspondence should be addressed.

E-mail: i.p.parkin@ucl.ac.uk Tel: 44(0)207 679 4669
Table S1. Loading weight and downforce edge-, top- and whole surface-coated samples floating on water

<table>
<thead>
<tr>
<th>Sample</th>
<th>Loading weight (mg/cm²)</th>
<th>Downforce by weight (mN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge-coated glass slide</td>
<td>160</td>
<td>31</td>
</tr>
<tr>
<td>Top coated glass slide</td>
<td>200</td>
<td>39</td>
</tr>
<tr>
<td>Whole surface coated glass</td>
<td>319</td>
<td>62</td>
</tr>
</tbody>
</table>

Figure S1. Water repellent and tests of untreated TiO₂ and PFOTES treated TiO₂ particles.
Fig. S2. Schematic illustration of (a) edge-, (b) top-, and (c) whole surface-coated glass samples floating on water.
As shown in Fig. S3 (a), the falling speed of the treated sample was slower than that of the untreated sample. This can be explained in that upward force (buoyancy) of significant amount of air bubbles entrapped (Fig. S3 (b)) on superhydrophobic surface retarded falling of the glass sample.

Fig. S3. (a) Photographs of untreated and bottom coated glass slides falling in water, and (b) plastron property of air bubble layer trapped on the treated surface in water
Fig. S4. (a) Schematic illustration of edged coated sample floating on water after the loading of 3.2 g weight (b) the illustration of sinking process of the sample after the loading of > 3.2 g weight.
Fig. S5. Supporting forces (water surface tension and micro air bubbles) applied to whole surface-coated samples.
Fig. S6. Illustration of shipping test
Fig. S7. Abrasion test of (a) superhydrophobic coated glass slide and (b) boat using sand paper.