Supporting Information

Redox and pH dual sensitive bone targeting nanoparticle to treat breast cancer bone metastases and inhibit bone resorption

Yi-pu Zhao¹‡, Wei-liang Ye¹‡, Dao-zhou Liu¹, Han Cui¹, Ying Cheng¹, Miao Liu¹, Bang-le Zhang¹, Qi-bing Mei², Si-yuan Zhou¹,² *

Legends:
SFig.1 The synthetic route of ALN-HA-PASP conjugate.
SFig.2 ¹H NMR spectrum of HA-PASP conjugate (panel A) and ALN-HA-PASP conjugate (panel B).
SFig.3 The X-ray photoelectric spectroscopy (XPS) spectra of DOX@HA-PASP, DOX@ALN-HA-PASP and DOX@ALN-(HA-PASP)CL.
SFig.4 Stability of DOX@ALN-HA-PASP and DOX@ALN-(HA-PASP)CL in pH7.4 PBS medium (panel A) and in pH5.0 PBS medium (panel B) at room temperature.
SFig.5 The hemolytic rate of HA-PASP blank nanoparticle, ALN-HA-PASP blank nanoparticle and ALN-(HA-PASP)CL blank nanoparticle on red blood cell. Data are mean±SD, n=5.
SFig.6 ALN release from ALN-HA-PASP and ALN-(HA-PASP)CL in pH5.0 PBS medium. Data are mean±SD, n=5.
SFig.7 Cellular uptake of DOX@ALN-(HA-PASP)CL, DOX@ALN-HA-PASP, DOX@HA-PASP and free DOX on MDA-MB-231 cells in pH7.4 detected by flow cytometry. Data are mean±SD, n=5. *P<0.05 vs DOX@HA-PASP.
SFig.8 The cytotoxicity of HA-PASP blank nanoparticle, ALN-HA-PASP blank nanoparticle and ALN-(HA-PASP)CL blank nanoparticle on MDA-MB-231 cells in 24 h. Data are mean±SD, n=5.