Electronic Supplemental Information for

A Facile Mechanochemical Route to Covalently Bonded Graphitic Carbon Nitride (g-C$_3$N$_4$) and Fullerene Hybrid toward Enhanced Visible Light Photocatalytic Hydrogen Production

Xiang Chen, Huanlin Chen, Jian Guan, Jieming Zhen, Zijun Sun, Pingwu Du, Yalin Lu, and Shangfeng Yang*

Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei 230026, China

Table of Contents

S1. Raman spectra of products obtained from ball-milling a mixture of pristine g-C$_3$N$_4$ and C$_{60}$ with and without LiOH catalyst.

S2. High-resolution C1s, N1s and O1s XPS spectra.

S3. XRD patterns of products obtained from ball-milling a mixture of pristine g-C$_3$N$_4$ and C$_{60}$ with and without LiOH catalyst.

S4. TGA curves.

S5. Schematic illustration of the formation mechanism of the g-C$_3$N$_4$/C$_{60}$ hybrid.

S6. FTIR, Raman spectra and XRD patterns of product obtained by reaction of g-C$_3$N$_4$ with C$_{60}$ in DMF solution.

S7. SEM image of product obtained from ball-milling pure g-C$_3$N$_4$.

S8. TEM elemental mapping images of pristine g-C$_3$N$_4$ and g-C$_3$N$_4$/C$_{60}$ hybrid.

S9. Quantum efficiency and action spectra of pristine g-C$_3$N$_4$ and g-C$_3$N$_4$/C$_{60}$ hybrid.

S10. Typical time courses of H$_2$ production based on pristine g-C$_3$N$_4$ and g-C$_3$N$_4$/C$_{60}$ hybrid.

S11. Visible light photocatalytic H$_2$ production rates of different control samples.

S12. Diffuse reflectance UV-vis absorption spectra of pristine g-C$_3$N$_4$ and g-C$_3$N$_4$/C$_{60}$ hybrid.

S13. BET surface areas of pristine g-C$_3$N$_4$ and g-C$_3$N$_4$/C$_{60}$ hybrid calculated from the nitrogen adsorption-desorption isotherms.

S14. Electrical conductivities of pristine g-C$_3$N$_4$ and g-C$_3$N$_4$/C$_{60}$ hybrid.

S15. Mott–Schottky plots of pristine g-C$_3$N$_4$ and g-C$_3$N$_4$/C$_{60}$ hybrid.

S16. PL spectra of pristine g-C$_3$N$_4$ and g-C$_3$N$_4$/C$_{60}$ hybrid.
S1. Raman spectra of products obtained from ball-milling a mixture of pristine g-C₃N₄ and C₆₀ with and without LiOH catalyst.

![Raman Spectra](image)

Figure S1. Raman spectra of pristine g-C₃N₄ (a), products obtained from ball-milling a mixture of pristine g-C₃N₄ and C₆₀ without (b) and with (c) LiOH catalyst, and pristine C₆₀ (d). The excitation laser light wavelengths are 532 nm (A) and 785 nm (B), respectively.

S2. High-resolution C1s, N1s and O1s XPS spectra.

![XPS Spectra](image)

Figure S2. High-resolution C1s XPS spectra of g-C₃N₄/C₆₀-4 wt% (a) and g-C₃N₄/C₆₀-20 wt% (b).
Figure S3. High-resolution N1s XPS spectra of g-C$_3$N$_4$/C$_{60}$-4 wt% (a) and g-C$_3$N$_4$/C$_{60}$-20 wt% (b).

Figure S4. High-resolution O1s XPS spectra of pristine g-C$_3$N$_4$ (a) and g-C$_3$N$_4$/C$_{60}$-12 wt% (b).

Figure S5. High-resolution N1s XPS spectra of products obtained from ball-milling a mixture of pristine g-C$_3$N$_4$ and C$_{60}$ without (a) and with (b) LiOH catalyst.
S3. XRD patterns of products obtained from ball-milling a mixture of pristine g-C₃N₄ and C₆₀ with and without LiOH catalyst.

Figure S6. XRD patterns of pristine g-C₃N₄ (a), products obtained from ball-milling a mixture of pristine g-C₃N₄ and C₆₀ without (b) and with (c) LiOH catalyst, and pristine C₆₀ (d).

S4. TGA curves.

Figure S7. TGA curves of pristine g-C₃N₄ (a), g-C₃N₄/C₆₀-12 wt% hybrid (b), and C₆₀ (c). The right dotted vertical line was added to aid identifying the last weight loss step (708 - 830 °C) corresponding to the decomposition of C₆₀.
Figure S8. TGA curves of pristine g-C$_3$N$_4$ (a), pure g-C$_3$N$_4$ after ball-milling (BM-g-C$_3$N$_4$, b), products obtained from ball-milling a mixture of pristine g-C$_3$N$_4$ and C$_{60}$ without (c) and with (d) LiOH catalyst.

S5. Schematic illustration of the formation mechanism of the g-C$_3$N$_4$/C$_{60}$ hybrid.

Scheme S1. A schematic illustration of the formation mechanism of the g-C$_3$N$_4$/C$_{60}$ hybrid via the mechanochemical ball-milling in the existence of LiOH as catalyst.
S6. FTIR, Raman spectra and XRD patterns of product obtained by reaction of g-C₃N₄ with C₆₀ in DMF solution.

Figure S9. FTIR spectra (A), Raman spectra (B) and XRD patterns (C) of pristine g-C₃N₄ (a), C₆₀ (b) and product obtained by reaction of g-C₃N₄ with C₆₀ in DMF solution (g-C₃N₄-C₆₀, c).

A mixture of 200 mg pristine g-C₃N₄ and 200 mg C₆₀ was dispersed in N,N-dimethylformamide (DMF) solution and stirred for 24 h under 70 °C, followed by Soxhlet-extraction with CS₂ for 48 h to remove the unreacted C₆₀. No C₆₀ moiety was detected in the final product based on FTIR, Raman and XRD characterizations, revealing that the reaction of C₆₀ with the terminal NHₓ did not occur despite of the high nucleophilicity of the primary amine, and consequently covalent bonding of C₆₀ with the terminal NHₓ at the edge of pristine g-C₃N₄ seems unlikely.

S7. SEM image of product obtained from ball-milling pure g-C₃N₄.

Figure S10. SEM image of product obtained from ball-milling of pure g-C₃N₄.
Figure S11. TEM elemental mapping images of the portion selected for pristine g-C₃N₄ (a, c, e) and g-C₃N₄/C₆₀-12 wt% hybrid (b, d, f). The corresponding C (c, d) and N (e, f) elemental mapping images are also shown.

The C elemental mapping image of g-C₃N₄/C₆₀ hybrid (image d) shows the enrichment of C elements at the edges (marked by arrows), whereas such a phenomenon is not observed for N element in the N elemental mapping image of g-C₃N₄/C₆₀ hybrid (image f). For the case of pristine g-C₃N₄, both C and N elements distribute uniformly without obvious enrichment at the edges (images c and e). This provides further experimental evidence on the C₆₀ bonding to the cleaved edge of g-C₃N₄.
S9. Quantum efficiency and action spectra of pristine g-C$_3$N$_4$ and g-C$_3$N$_4$/C$_{60}$ hybrid.

To measure the quantum yield for visible light H$_2$ evolution, 50 mg powder sample was dispersed in 100 mL aqueous solution containing 17.5 mg Eosin Y (EY) and 5 ml triethanolamine (TEOA), which was irradiated by a monochromic light using a bandpass filter (± 5 nm) for 420, 450, 475, 520, and 550 nm, respectively. The quantum efficiency (φ) is calculated according to the following equation (1):

$$\varphi = \frac{\text{number of reacted electrons}}{\text{number of incident photons}} \times 100\%$$

$$\varphi = \frac{\text{number of evolved H}_2 \text{ molecules} \times 2}{\text{number of incident photons}} \times 100\%$$ \hspace{1cm} (1)

Where the number of incident photons (N_{ph}) can be calculated from the power of the incident light (P_{ph}, 0.194, 0.205, 0.202, 0.305 and 0.225 J/s for 420, 450, 475, 520, and 550 nm, respectively), which was calibrated by an irraditometer (FZ-A, Beijing Normal University Optical Instrument), according to equation (2) (see Figure S12):

$$N_{\text{ph}} = P_{\text{ph}} \times \frac{t}{(hc/\lambda)} = P_{\text{ph}} \times t \times \frac{\lambda/\lambda}{(hc)}$$ \hspace{1cm} (2)

Where t is the irradiation time, λ is the wavelength of the incident light, h is planck constant, c is the speed of light in vacuum.

Table S1. Quantum efficiencies (φ) of different samples with (w) or without (w/o) Pt cocatalyst and EY photosensitizer measured under irradiation with visible light at $\lambda = 420$ nm.

<table>
<thead>
<tr>
<th>sample</th>
<th>condition</th>
<th>quantum efficiency (φ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pristine g-C$_3$N$_4$</td>
<td>w/o</td>
<td>0.072%</td>
</tr>
<tr>
<td>g-C$_3$N4/C${60}$-12 wt%</td>
<td>w/o</td>
<td>0.20%</td>
</tr>
<tr>
<td>no (control)</td>
<td>w</td>
<td>6.95%</td>
</tr>
<tr>
<td>pristine g-C$_3$N$_4$</td>
<td>w</td>
<td>6.79%</td>
</tr>
<tr>
<td>g-C$_3$N4/C${60}$-12 wt%</td>
<td>w</td>
<td>6.97%</td>
</tr>
<tr>
<td>pristine g-C$_3$N$_4$</td>
<td>w/o</td>
<td>0.037%</td>
</tr>
<tr>
<td>g-C$_3$N4/C${60}$-12 wt%</td>
<td>w/o</td>
<td>0.051%</td>
</tr>
</tbody>
</table>

Without the existence of Pt cocatalyst, φ of g-C$_3$N$_4$/C$_{60}$-12 wt% hybrid is 0.20% (with the existence of EY photosensitizer), which is about 2.8 times of that for pristine g-C$_3$N$_4$ (0.072%). Such an enhancement ratio is consistent with that measured for H$_2$ production rate (about 4.0 times), confirming that covalently bonding of C$_{60}$ onto g-C$_3$N$_4$ can indeed result in enhanced visible light photocatalytic H$_2$ production.
We also measured and compared the quantum efficiencies (Φ) of g-C$_3$N$_4$/C$_{60}$-12 wt% hybrid and pristine g-C$_3$N$_4$ under different conditions with the existence of Pt cocatalyst (measured under irradiation with visible light at $\lambda = 420$ nm). Surprisingly, with the co-existence of both Pt cocatalyst and EY photosensitizer, the measured Φ of g-C$_3$N$_4$/C$_{60}$-12 wt% hybrid and pristine g-C$_3$N$_4$ (6.97% and 6.79%, respectively) are quite comparable to that obtained for the control sample (only Pt cocatalyst + EY photosensitizer, 6.95%). This suggests that in this case the visible light H$_2$ production is primarily contributed by EY. Furthermore, without the existence of EY photosensitizer, the measured Φ of g-C$_3$N$_4$/C$_{60}$-12 wt% hybrid and pristine g-C$_3$N$_4$ (0.051% and 0.037%, respectively) with the existence of Pt cocatalyst only dramatically decrease, and are even lower than that measured without Pt cocatalyst (0.072%). This confirms further the importance of EY photosensitizer which plays the role of sensitizer for extending the spectral response region as discussed already in the main text.

Figure S12. UV-VIS diffuse reflectance spectra of EY (a), g-C$_3$N$_4$+EY (b) and g-C$_3$N$_4$/C$_{60}$-12 wt%+EY (c), and action spectra for H$_2$ evolution of g-C$_3$N$_4$+EY (d) and g-C$_3$N$_4$/C$_{60}$-12 wt%+EY (e) from an aqueous triethanolamine (TEOA) solution under visible light irradiation of 300 W Xe-lamp using a bandpass filter for 420, 450, 475, 520, and 550 nm, respectively.
S10. Typical time courses of \(H_2 \) production based on pristine g-C\(_3\)N\(_4\) and g-C\(_3\)N\(_4\)/C\(_{60}\)-12 wt% hybrid.

![Graph showing typical time courses of \(H_2 \) production for pristine g-C\(_3\)N\(_4\) and g-C\(_3\)N\(_4\)/C\(_{60}\)-12 wt% hybrid.](image)

Figure S13. Typical time courses of \(H_2 \) production based on pristine g-C\(_3\)N\(_4\) and g-C\(_3\)N\(_4\)/C\(_{60}\)-12 wt% hybrid. The measurements were carried out in an aqueous solution (containing TEOA as a hole scavenger and EY as the photosensitizer) evacuated per 3 h without renewing the hole scavenger under visible light (\(\lambda > 420 \text{ nm} \)) irradiation of 300 W Xe-lamp.

S11. Visible light photocatalytic \(H_2 \) production rates of different control samples.

![Bar chart showing photocatalytic \(H_2 \) production rates for different control samples.](image)

Figure S14. Photocatalytic \(H_2 \) production rates of different samples measured in 5 vol% TEOA aqueous solution in the presence of EY for 3 h under visible light (\(\lambda > 420 \text{ nm} \)) irradiation of 300 W Xe-lamp.

Blend-1: a physical blend of g-C\(_3\)N\(_4\)/C\(_{60}\) (64:9, w/w); **Blend-2**: a mixture of pristine g-C\(_3\)N\(_4\) and C\(_{60}\) powders ball-milled without LiOH catalyst (g-C\(_3\)N\(_4\)/C\(_{60}\)-w/o LiOH). **Comp-1, 2, 3**: C\(_{60}\)/g-C\(_3\)N\(_4\) composites with different C\(_{60}\)/dicyandiamide mass ratios (0.03 wt%, 0.3 wt% and 1.0 wt% for Comp-1, 2, 3, respectively) using the method reported in ref. [27].
S12. Diffuse reflectance UV-vis absorption spectra of pristine g-C₃N₄ and g-C₃N₄/C₆₀-12 wt% hybrid.

Figure S15. Diffuse reflectance UV-vis absorption spectra (A) and ($\alpha h\nu$)2 versus $h\nu$ curves (B) of pristine g-C₃N₄ (a) and g-C₃N₄/C₆₀-12 wt% hybrid (b), and C₆₀ (c).

S13. BET surface areas of pristine g-C₃N₄ and g-C₃N₄/C₆₀ hybrid calculated from the nitrogen adsorption-desorption isotherms.

Table S2. BET surface areas of pristine g-C₃N₄, BM-g-C₃N₄, g-C₃N₄/C₆₀-12 wt% and g-C₃N₄/C₆₀ w/o LiOH.

<table>
<thead>
<tr>
<th>sample</th>
<th>BET Surface area (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pristine g-C₃N₄</td>
<td>12.5</td>
</tr>
<tr>
<td>BM-g-C₃N₄</td>
<td>16.1</td>
</tr>
<tr>
<td>g-C₃N₄/C₆₀-12 wt%</td>
<td>16.6</td>
</tr>
<tr>
<td>g-C₃N₄-C₆₀-w/o LiOH</td>
<td>16.9</td>
</tr>
</tbody>
</table>

Figure S16. Nitrogen adsorption–desorption isotherms of g-C₃N₄ (a) and g-C₃N₄/C₆₀ hybrid (b).
S14. Electrical Conductivities of pristine g-C₃N₄ and g-C₃N₄/C₆₀ hybrid.

Figure S17. Electrical conductivities of the pristine g-C₃N₄, g-C₃N₄/C₆₀-12 wt% and a physical blend of g-C₃N₄:C₆₀ (g-C₃N₄ + C₆₀). Samples were pressed into tablets with the same thickness of approximately 1 mm.

S15. Mott–Schottky plots of pristine g-C₃N₄ and g-C₃N₄/C₆₀ hybrid.

Figure S18. Mott-Schottky (MS) plots of pristine g-C₃N₄ (a) and g-C₃N₄/C₆₀-12 wt% hybrid (b) film electrodes. The MS plots were obtained in a 0.1 M Na₂SO₄ aqueous solution at a frequency of 1 kHz. The flat band potentials of g-C₃N₄ (a) and g-C₃N₄/C₆₀-12 wt% hybrid (b) are determined to be -1.15 and -0.92 V vs. Ag/AgCl, which correspond to -0.95 and -0.72 V vs. NHE, respectively, according to an equation E(NHE) = E(Ag/AgCl) + 0.198.
S16. PL spectra of pristine g-C₃N₄ and g-C₃N₄/C₆₀ hybrid.

![Figure S19](image-url)

Figure S19. (A) PL spectra of pristine g-C₃N₄ (a) and g-C₃N₄/C₆₀-12 wt% hybrid (b) under the excitation wavelength of 360 nm. (B) PL spectra of EY (a) and EY + g-C₃N₄ (b) under the excitation wavelength of 520 nm.