Supplementary Information

Surface Passivation of Mixed-Halide Perovskite CsPb(Br$_x$I$_{1-x}$)$_3$

Nanocrystals by Selective Etching for Improved Stability

Qiang Jing,1a Mian Zhang,1a Xiang Huang,b Xiaoming Ren,b Peng Wang*a and Zhenda Lu*a

a National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

b State Key Laboratory of Materials-Oriented Chemical Engineering and College of Science, Nanjing University of Technology, Nanjing, 210009, China.

‡ Q. Jing and M. Zhang contributed equally to this work.

*e-mail: wangpeng@nju.edu.cn and luzhenda@nju.edu.cn
Fig. S1. XRD patterns of CsPbBr$_3$ (a) and CsPbI$_3$ (b) NCs after washing with ethanol and acetone.
Fig. S2. (a) Photograph of colloidal solutions of different perovskite CsPb(Br\textsubscript{x}I\textsubscript{1-x})\textsubscript{3} NCs under normal and UV light ($\lambda = 365$ nm). (b,c) Normalized PL spectra of nanoparticles CsPb(Br\textsubscript{x}I\textsubscript{1-x})\textsubscript{3} after washing with ethanol and acetone. (d) Corresponding PL peak position vs stoichiometric ratio of halide ions, extracted from Figure S1b and S1c.

Fig. S3. Normalized PL spectra of mix-halide pervoskite CsPb(Br\textsubscript{x}I\textsubscript{1-x})\textsubscript{3} NCs after washed with different antislovents.
Fig. S4. High-resolution XPS spectra corresponding to Pb 4f, Br 3d, I 3d, Cs 4d and Cs 3d in CsPb(Br$_x$I$_{1-x}$)$_3$ (x = 0.2) nanoparticles after washing with ethanol and acetone.

Fig. S5. Absolute quantum yield (QY) of mixed-halide CsPb(Br$_x$I$_{1-x}$)$_3$ nanocrystals with different x values.