Supporting Information

Large Optical Stark Shifts in Single Quantum Dot coupled to Core-Shell GaAs/AlGaAs Nanowire

Ying Yu1*, Yu-Ming Wei1, Jing Wang1, Jia-Hua Li1, Xiang-jun Shang3,4, Hai-Qiao Ni3,4, Zhi-Chuan Niu3,4*, Xue-hua Wang1, Si-yuan Yu1,2

1State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
2Photonics Group, Merchant Venturers School of Engineering, University of Bristol, Bristol BS8 1UB, UK
3State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China
4Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

Figure S1. Raman spectrum of GaAs/Al\textsubscript{x}Ga\textsubscript{1-x}As core-shell nanowire (NW). The NW was shaved from the growth substrate and then transferred to a Si substrate for test. The Al composition of the Al\textsubscript{x}Ga\textsubscript{1-x}As shell can be determined using the fitted curves that relate the LO-phonon frequency with the aluminum content x~0.7 in the Al\textsubscript{x}Ga\textsubscript{1-x}As system, according to the reference equations[1,2].
Figure S2. Aberration-corrected high-angle annular dark-field STEM images of the entire cross section of a typical GaAs nanowire coated with AlGaAs shells, along with energy dispersive X-ray spectroscopy (EDX) spot scans. In the STEM image, the lighter regions are corresponding to GaAs and the darker region to $\text{Al}_{0.7}\text{Ga}_{0.3}\text{As}$. We observe the formation of little darker stripes at some of the nanowire corners, indicating Al enrichment (~80%). This little accumulation is consistent with the difference in chemical potential on (110) facets [2-4].

Figure S3. (a) Spectra of the SHG signals under different excitation wavelengths from 800 nm to 1040 nm, the excitation power is kept at 2.5mW. (b) The SHG intensities under different excitation powers, the excitation wavelength is kept at 1040 nm. (c) The SHG intergrated intensities and linewidths as a function of the pumping power.
laser power. The quadratic dependency of the SHG indicates the signal is generated from a second-order nonlinear process.

Figure S4. (a) Power dependence of the QD emission under down-conversion using 512 nm excitation. (b-d) Power dependence of the QD emission under up-conversion excitation using different wavelengths of 840 nm, 900 nm, 1040 nm.