Electronic Supplementary Information

Sulfur vacancy-induced reversible doping of transition metal disulfides via hydrazine treatment

Sang-Soo Chee, a Chohee Oh, a Myungwoo Son, a Gi-Cheol Son, a Hanbyeol Jang, a Tae Jin Yoo, a Seungmin Lee, b Wonki Lee, c Jun Yeon Hwang, c Hyunyong Choi, b Byoung Hun Lee a and Moon-Ho Ham* a

a School of Materials Science and Engineering, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
b School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
c Institute of Advanced Composites Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Eunha-ri, Bondong-eup, Wanju-gun, Jeollabuk-do 55324, Republic of Korea

E-mail: mhham@gist.ac.kr
Figure S1. Raman spectra of WS$_2$ devices treated with hydrazine for different amounts of time.
Figure S2. Total resistance (R_T) of WS$_2$ FETs. (a) R_T-V_G curves of WS$_2$ FETs treated with hydrazine for various amounts of time, obtained from I_{DS}-V_G curves in Fig. 2a. (b) Enlarged plots of the R_T-V_G curves in Fig. S2a.
Figure S3. Doping stability of a hydrazine-doped WS\textsubscript{2} FET (a) without and (b) with a PMMA layer in ambient air. The on/off current ratio and field-effect mobility of the hydrazine-doped WS\textsubscript{2} FET covered with the PMMA layer remain almost unchanged in ambient air after even a month, demonstrating good air stability.
Figure S4. XPS spectra of W 4f and S 2p for (a) pristine, (b) hydrazine-doped, and (c) sulfur-annealed WS₂ flakes. Fitted curves of W 4f and S 2p spectra are represented as W⁴⁺ and S²⁻, respectively. Their S/W atomic ratios are estimated to be 1.90, 1.82, and 1.90 for pristine, hydrazine-doped, and sulfur-annealed samples, respectively.
Figure S5. AFM images of WS₂ flakes (a) before and (b) after hydrazine treatment.
Figure S6. S/W atomic ratios for pristine, argon-annealed, hydrazine-doped, and sulfur-annealed WS₂ flakes, taken by EDX measurements.
Figure S7. Raman spectra of a WS$_2$ flake upon five consecutive doping cycles, showing doping reversibility.
Figure S8. Transfer characteristics of a WS$_2$ FET upon five consecutive doping cycles, showing doping reversibility.
Figure S9. (a) AFM image and (b) thickness profile of a pristine MoS$_2$ FET.
Figure S10. Raman spectra showing doping reversibility of MoS$_2$. (a) Raman spectra of a MoS$_2$ flake upon five consecutive doping cycles, and (b) variations in the E_{2g}^1 and A_{1g} peaks.
Figure S11. (a) Transfer characteristics and (b) variations in electrical properties including the on/off current ratio, field-effect mobility, and threshold voltage of a MoS$_2$ FET upon five consecutive doping cycles, showing doping reversibility.
Figure S12. Time-dependent photoresponse characteristics of pristine WS₂ devices under irradiation with visible light of various power densities at 625 nm, measured at (a) $V_{DS} = 1$ V and (b) 2 V.
Figure S13. Time-dependent photoresponse characteristics of WS$_2$ devices treated with hydrazine molecules for different amounts of time, measured under irradiation with visible light at 625 nm and 1 mW cm$^{-2}$, and at (a) $V_{DS} = 1$ V and (b) 2 V.