Supporting Information

In Situ Crystal Growth of Gold Nanocrystals on Upconversion Nanoparticles for Synergetic Chemo-Photothermal Therapy

Ruoyan Wei, a Wensong Xi, b Haifang Wang, b Jinliang Liu, a Torsten Mayr, c Liyi Shi, a and Lining Sun* a

a Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University, Shanghai 200444, China. E-mail: lnsun@shu.edu.cn; Tel: +86-21-66137153

b Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.

c Applied Sensors, Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, 8010 Graz, Austria.
1. The photothermal conversion effect of UCNPs@Au-DOX

According to Roper's report,1 the photothermal conversion efficiency η of UCNPs@Au-DOX nanocomposites was calculated using the following eq 1:

$$\eta = \frac{hS(T_{\text{max}} - T_{\text{surr}}) - Q_{\text{Dis}}}{I(1 - 10^{-A_{808}})}$$ \hspace{1cm} (1)

Where h is heat transfer coefficient, S is the surface area of the container, T_{max} is the equilibrium temperature, T_{surr} is ambient temperature of the surroundings. Q_{Dis} is heat losted from light absorbed by the container itself, which was measured independently containing pure water without UCNPs@Au-DOX. And A_{808} is the absorption intensity of UCNPs@Au-DOX at 808 nm. The value of hS is derived according to eq 2:

$$\tau_s = \frac{m_D C_D}{hS}$$ \hspace{1cm} (2)

Where τ_s is the sample system time constant, m_D and C_D are the mass and heat capacity of ultrapure water used as the solvent, respectively.

And, τ_s can be calculated by eq 3:

$$\tau = -\frac{\ln \theta}{\tau_s}$$ \hspace{1cm} (3)

Time constant for heat transfer from the system is determined to be $\tau_s = 221.1$ s applying the linear time data from the cooling period (after 600 s) vs negative natural logarithm of driving force temperature (Fig. 3d). Substituting the value of τ_s into eq 2, hS can be obtained. And the value of hS replaced into eq 1, 808 nm laser heat conversion efficiency (η) of UCNPs@Au-DOX nanocomposites can be calculated to be 12%.

2. Molecule structure of SH-PEG-DOX:

\begin{center}
\[\text{Molecule structure of SH-PEG-DOX} \]
\end{center}
Fig. S1. HRTEM image of cit-UCNPs@Au. All of the crystal lattice fringes of gold nanoparticles were displayed with red arrows.
Fig. S2. The energy dispersive X-ray (EDX) spectrum (a) and elemental mapping images of cit-UCNPs@Au (b).
Fig. S3. Dynamic light scattering (DLS) of cit-UCNPs (a) cit-UCNPs@Au (b) and UCNPs@Au-DOX (c) in water (200 μg/mL).
Fig. S4. The zeta potentials of cit-UCNPs, cit-UCNPs@Au, SH-PEG-DOX, and UCNPs@Au-DOX in water (200 μg/mL).
Fig. S5. XRD patterns of cit-UCNPs, UCNPs@Au-DOX and the standard card of β-NaYF₄ (JCPDS: 16-0334), *: the peaks of gold nanoparticles.
Fig. S6. FT-IR spectra of UCNPs, citric acid, and cit-UCNPs (a); FT-IR spectra of DOX, SH-PEG-HZ, SH-PEG-DOX, and UCNPs@Au-DOX (b).
Fig. S7. (a) Visible absorption spectra of cit-UCNPs, DOX, cit-UCNPs@Au, and UCNPs@Au-DOX; (b) Spectral overlap between the upconversion luminescence (UCL) spectrum of cit-UCNPs (green line) and absorption spectrum of cit-UCNPs@Au (red line).
Fig. S8. Thermogravimetric (TG) curves of cit-UCNPs@Au and UCNPs@Au-DOX.
Fig. S9. The upconversion luminescence (UCL) decay profiles of $^4S_{3/2}$ (a) and $^4F_{9/2}$ (b) levels of Er$^{3+}$ ion under excitation of 980 nm pulsed laser (1.5 W/cm2).
Fig. S10. Visible absorption spectrum of UCNPs@Au-DOX (400 μg/mL) in water.
Fig. S11. The photographs of cit-UCNPs@Au (a) and UCNPs@Au-DOX (b) in PBS and DMEM culture solution (200 μg/mL), respectively; There are no obvious aggregation after 24 h.
Fig. S12. The three-dimensional confocal luminescence reconstructions of HeLa cells after incubation with cit-UCNPs@Au for 0.5, 1, 2, and 4 h collected as a series along the Z optical axis, $\lambda_{ex} = 980$ nm, 500 mW.
Reference