Supporting Information

**Five-nanometer ZnSn$_2$O$_4$: Cr, Eu ultra-small nanoparticles as new near infrared-emitting persistent luminescent nanoprobes for cellular and deep tissue imaging at 800 nm**

Jinlei Li$^{a,b}$, Junpeng Shi$^a$, Chengcheng Wang$^{a,b}$, Penghui Li$^{a,b}$, Zhenfeng Yu$^{a,b}$ and Hongwu Zhang$^a$

a. Key Lab of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
b. College of Resources and Environment, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China

**Fig. S1** EDS spectrum of the ZSO.

**Fig. S2.** Excitation spectra of the ZSO.
**Fig. S3** Thermo-luminescent curves of the ZSO 5 min after stopping the excitation.

**Fig. S4** Schematic representation of the persistent NIR luminescent mechanism of the ZSO.

**Fig. S5** The bio-functional process of ZSO with APTES and FA.

**Fig. S6** (a) FTIR spectra of ZSO, ZSO-NH$_2$ and ZSO-FA. (b) ZETA of ZSO, ZSO-NH$_2$ and ZSO-FA.
**Fig. S7** The hydrodynamic diameter analysis of ZSO-FA in physiological conditions (PH7.2 PBS, physiological salt water and RM1640 culture medium)

**Fig. S8** MTT of ZSO-FA with HUVECs and MCF7 cells.

**Fig. S9.** (a) Comparative different deep pork tissue (1, 2, 2.5, and 3 cm) *in vivo* imaging of ZSO (0.1 mL, 1 mg/mL) with in situ excitation at 650 nm for 5 min. (b) Comparative different deep pork tissue (1, 2, 2.5, and 3 cm) *in vivo* imaging of ZSO with in situ excitation at 808 nm for 1 min.
**Fig. S10.** In vivo luminescent images of H22 tumor-bearing mice after intravenous injection of ZSO-NH$_2$ (0.2 mL, 1 mg/mL, 5 min excitation with 254 nm before injection).

**Figure S11.** (a) NIR luminescent images of different organs from an anatomical tumor mouse at 24 h post intravenous injection of ZSO-FA (0.2 mL, 1 mg/mL) after 650 nm light excitation for 5 min: 1 liver, 2 heart, 3 stomach, 4 kidney, 5 lung, 6 spleen, and 7 tumor. (b) In vivo biodistribution in tumor-bearing athymic mice at 24 h post-injection of ZSO-FA nanoparticles.