Electronic Supplementary Information

Coordination self-assembly platinum-bisphosphonate polymer-metal complex nanoparticles for cisplatin delivery and effective cancer therapy

Yanjuan Huang¹, Yuanfeng He¹, Ziyuan Huang, Yali Jiang, Weijing Chu, Xiaoqi Sun, Liangfeng Huang, Chunshun Zhao*

School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 132 Waihuan East Road, Guangzhou Higher Education Mega Center, GuangZhou 510006, People’s Republic of China, 510006.

¹ These authors contributed equally to this work.

*Corresponding author

Chunshun Zhao

E-mail address: zhaocs@mail.sysu.edu.cn

Tel: +86 20 39943118

Fax: +86 20 39943118
Supplementary caption

Fig. S1. ESI-MS spectra of Pt(NH$_3$)$_2$(OSO$_3$)(OH$_2$).

Fig. S2. Cell viability determined by MTT. Effect of ALN-PEG$_{2k}$-ALN, ALN-ASA$_{C8}$-PEG$_{2k}$-ASA$_{C8}$-ALN and ASA$_{C18}$-PEG$_{2k}$-ALN on the viability of HeLa cells for 48 h (A), A549 cells for 48 h (B), MCF-7 cells for 48 h (C), HeLa cells for 72 h (D), A549 cells for 72 h (E), MCF-7 cells for 72 h (F). Data were expressed as mean ± standard deviation (SD).

Fig. S3. Plot of I_{336}/I_{333} (from pyrene excitation spectra) vs log C for concentration C of (A) ALN-ASA$_{C8}$-PEG$_{2k}$-ASA$_{C8}$-ALN, (B) ALN-PEG$_{2k}$-ASA$_{C18}$. Pyrene was used as molecular probe ([Pyrene] = 6 × 10$^{-7}$ M).
1. Materials and Methods

1.1 Determination of critical micelle concentration of the polymer carriers

The critical micelle concentration (CMC) of polymer carriers ALN-ASA$_{C8}$-PEG$_{2k}$-ASA$_{C8}$-ALN and ASA$_{C18}$-PEG$_{2k}$-ALN were determined using pyrene as fluorescence probe. An aliquot of 200 μL pyrene (6 × 10$^{-6}$ mol/L in acetone) was added to 2 ml EP tube and evaporated to dryness. Different concentrations of ALN-ASA$_{C8}$-PEG$_{2k}$-ASA$_{C8}$-ALN and ASA$_{C18}$-PEG$_{2k}$-ALN solutions were added into the EP tube and the concentration of pyrene in each EP tube was maintained at 6 × 10$^{-7}$ mol/L. All the samples were incubated at 37 °C overnight under stirring. Steady-state fluorescence spectra were measured by PTI QuantaMaster™ 4CW. The emission wavelength was set at 390 nm, and the pyrene ex at 300-360 nm were recorded. The curve of I_{336}/I_{333} against the logarithm of ALN-ASA$_{C8}$-PEG$_{2k}$-ASA$_{C8}$-ALN and ASA$_{C18}$-PEG$_{2k}$-ALN was plotted. CMC was indicated by the inflection in the curve.
Fig. S1. ESI-MS spectra of Pt(NH$_3$)$_2$(OSO$_3$)(OH$_2$).

Fig. S2. Cell viability determined by MTT assay. Effect of ALN-PEG$_{2k}$-ALN, ALN-ASA$_{C8}$-PEG$_{2k}$-ASA$_{C8}$-ALN and ASA$_{C18}$-PEG$_{2k}$-ALN on the viability of HeLa cells for 48 h (A), A549 cells for 48 h (B), MCF-7 cells for 48 h (C), HeLa cells for 72 h (D), A549 cells for 72 h (E), MCF-7 cells for 72 h (F). Data were expressed as mean ± standard deviation (SD).
Fig. S3. Plot of I_{336}/I_{333} (from pyrene excitation spectra) vs log C for concentration C of (A) ALN-ASA$_{C8}$-PEG$_{2k}$-ASA$_{C8}$-ALN, (B) ALN-PEG$_{2k}$-ASA$_{C18}$. Pyrene was used as molecular probe ([Pyrene] = 6×10^{-7} M).