Electronic Supplementary Information

A High-capacity Dual Core-shell Structured MWCNTs@S@PPy Nanocomposite Anode for Advanced Aqueous Rechargeable Lithium Battery

Xiongwei Wu,‡Xinhai Yuan,‡ Jingang Yu, Jun Liu, Faxing Wang, Lijun Fu, Wenxin Zhou, Yusong Zhu, Qingming Zhou, Yuping Wu

‡These authors contributed equally to this work
Email: wuyp@fudan.edu.cn; Tel./Fax: +86-21-5566 4223

1. CV curves of carbon felt (CF)

Fig. S1 CV curves of carbon felt at scan rate of 5 mV s⁻¹.
2. Electrochemical performance of MWCNTs@S and PPy in aqueous saturated LiAc solution using carbon felt (CF) as the current collector

![Graphs showing electrochemical performance](image)

Fig. S2 (a) CV curve and (b) charge-discharge curve of PPy and (c) cycling performance of the MWCNTs@S@PPy and MWCNTs@S in LiAc aqueous solution with a restriction of the discharge capacity of 350 mAh g\(^{-1}\) and a 0.2 V potential cut-off during the charging process at a current density of 1 A g\(^{-1}\) and (c, d) charge-discharge curves of the MWCNTs@S@PPy, MWCNTs@S during cycling.
3. Color change of the MWCNTs@S and MWCNTs@S@PPy nanocomposite before and after cycling in aqueous saturated LiAc solution

Prior to cycling, the aqueous electrolytes are transparent. However, the electrolyte for the MWCNTs@S became yellowish after the 1st discharge and became turbid after 50 cycles. These results show the active substance drop off from the current collector, which mainly due to the dissolution of the polysulfide (PS) anions and the huge volume change during cycling. In contrast, before and after 50 cycles the electrolyte for the MWCNTs@S@PPy is still transparent, which indicates that the PPy coating can not only prevent or inhibit the dissolution of polysulfide (PS) anions but also buffer the volume changes during the cycling process.

4. CV curves of LiMn$_2$O$_4$ nanorod in saturated LiAc

Prior to cycling, the aqueous electrolytes are transparent. However, the electrolyte for the MWCNTs@S became yellowish after the 1st discharge and became turbid after 50 cycles. These results show the active substance drop off from the current collector, which mainly due to the dissolution of the polysulfide (PS) anions and the huge volume change during cycling. In contrast, before and after 50 cycles the electrolyte for the MWCNTs@S@PPy is still transparent, which indicates that the PPy coating can not only prevent or inhibit the dissolution of polysulfide (PS) anions but also buffer the volume changes during the cycling process.

4. CV curves of LiMn$_2$O$_4$ nanorod in saturated LiAc

Prior to cycling, the aqueous electrolytes are transparent. However, the electrolyte for the MWCNTs@S became yellowish after the 1st discharge and became turbid after 50 cycles. These results show the active substance drop off from the current collector, which mainly due to the dissolution of the polysulfide (PS) anions and the huge volume change during cycling. In contrast, before and after 50 cycles the electrolyte for the MWCNTs@S@PPy is still transparent, which indicates that the PPy coating can not only prevent or inhibit the dissolution of polysulfide (PS) anions but also buffer the volume changes during the cycling process.

Prior to cycling, the aqueous electrolytes are transparent. However, the electrolyte for the MWCNTs@S became yellowish after the 1st discharge and became turbid after 50 cycles. These results show the active substance drop off from the current collector, which mainly due to the dissolution of the polysulfide (PS) anions and the huge volume change during cycling. In contrast, before and after 50 cycles the electrolyte for the MWCNTs@S@PPy is still transparent, which indicates that the PPy coating can not only prevent or inhibit the dissolution of polysulfide (PS) anions but also buffer the volume changes during the cycling process.

Prior to cycling, the aqueous electrolytes are transparent. However, the electrolyte for the MWCNTs@S became yellowish after the 1st discharge and became turbid after 50 cycles. These results show the active substance drop off from the current collector, which mainly due to the dissolution of the polysulfide (PS) anions and the huge volume change during cycling. In contrast, before and after 50 cycles the electrolyte for the MWCNTs@S@PPy is still transparent, which indicates that the PPy coating can not only prevent or inhibit the dissolution of polysulfide (PS) anions but also buffer the volume changes during the cycling process.

4. CV curves of LiMn$_2$O$_4$ nanorod in saturated LiAc

4. CV curves of LiMn$_2$O$_4$ nanorod in saturated LiAc

Prior to cycling, the aqueous electrolytes are transparent. However, the electrolyte for the MWCNTs@S became yellowish after the 1st discharge and became turbid after 50 cycles. These results show the active substance drop off from the current collector, which mainly due to the dissolution of the polysulfide (PS) anions and the huge volume change during cycling. In contrast, before and after 50 cycles the electrolyte for the MWCNTs@S@PPy is still transparent, which indicates that the PPy coating can not only prevent or inhibit the dissolution of polysulfide (PS) anions but also buffer the volume changes during the cycling process.

4. CV curves of LiMn$_2$O$_4$ nanorod in saturated LiAc

Prior to cycling, the aqueous electrolytes are transparent. However, the electrolyte for the MWCNTs@S became yellowish after the 1st discharge and became turbid after 50 cycles. These results show the active substance drop off from the current collector, which mainly due to the dissolution of the polysulfide (PS) anions and the huge volume change during cycling. In contrast, before and after 50 cycles the electrolyte for the MWCNTs@S@PPy is still transparent, which indicates that the PPy coating can not only prevent or inhibit the dissolution of polysulfide (PS) anions but also buffer the volume changes during the cycling process.

4. CV curves of LiMn$_2$O$_4$ nanorod in saturated LiAc

Prior to cycling, the aqueous electrolytes are transparent. However, the electrolyte for the MWCNTs@S became yellowish after the 1st discharge and became turbid after 50 cycles. These results show the active substance drop off from the current collector, which mainly due to the dissolution of the polysulfide (PS) anions and the huge volume change during cycling. In contrast, before and after 50 cycles the electrolyte for the MWCNTs@S@PPy is still transparent, which indicates that the PPy coating can not only prevent or inhibit the dissolution of polysulfide (PS) anions but also buffer the volume changes during the cycling process.

Prior to cycling, the aqueous electrolytes are transparent. However, the electrolyte for the MWCNTs@S became yellowish after the 1st discharge and became turbid after 50 cycles. These results show the active substance drop off from the current collector, which mainly due to the dissolution of the polysulfide (PS) anions and the huge volume change during cycling. In contrast, before and after 50 cycles the electrolyte for the MWCNTs@S@PPy is still transparent, which indicates that the PPy coating can not only prevent or inhibit the dissolution of polysulfide (PS) anions but also buffer the volume changes during the cycling process.

Prior to cycling, the aqueous electrolytes are transparent. However, the electrolyte for the MWCNTs@S became yellowish after the 1st discharge and became turbid after 50 cycles. These results show the active substance drop off from the current collector, which mainly due to the dissolution of the polysulfide (PS) anions and the huge volume change during cycling. In contrast, before and after 50 cycles the electrolyte for the MWCNTs@S@PPy is still transparent, which indicates that the PPy coating can not only prevent or inhibit the dissolution of polysulfide (PS) anions but also buffer the volume changes during the cycling process.

Prior to cycling, the aqueous electrolytes are transparent. However, the electrolyte for the MWCNTs@S became yellowish after the 1st discharge and became turbid after 50 cycles. These results show the active substance drop off from the current collector, which mainly due to the dissolution of the polysulfide (PS) anions and the huge volume change during cycling. In contrast, before and after 50 cycles the electrolyte for the MWCNTs@S@PPy is still transparent, which indicates that the PPy coating can not only prevent or inhibit the dissolution of polysulfide (PS) anions but also buffer the volume changes during the cycling process.
5. SEM, TEM micrographs and XRD pattern of LiMn$_2$O$_4$ nanorod

Fig. S5 SEM (a) and TEM (b) micrographs and (c) XRD of LiMn$_2$O$_4$ nanorod.