Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

Supplemental Information

Single Molecule Contact Printing

Content

1.	Sup	plem	nental results	3
	1.1	Cor	ntact angle	3
	1.2	Ato	mic Force microscopy	4
	1.3	X-R	ay Photoelectron Spectroscopy (XPS)	5
	1.4	Sur	face Plasmon Resonance	6
	1.5	Sing	gle Molecule Contact Printing	7
	1.5.	1	Pattern analysis	10
	1.5.	1	Negative control	11
2.	Prin	ting	onto bare gold films using thiolated DNA ink strands	12
	2.1	Prir	nting patterns for attachment of STV	13
	2.2	DN	A Origami Design	14
	2.3	Pro	bing with gold-nanoparticles	15
	2.3.	1	AFM	15
	2.3.	2	Scanning Electron Microscopy	19
3.	Refe	erend	ces	20
4.	DNA	۹ seq	uences	21
	4.1	DN	A Origami stamp	21
	4.2	Stri	pe pattern overhangs and handles	23
	4.3	Cross pattern overhangs and handles		24
	4.4	'3 s	pot' patterns for gold nanoparticles	24

1. Supplemental results

1.1 Contact angle

For contact angle measurements 10 μ L drops of distilled water were deposited on either a freshly stripped gold film, on a film that had been incubated 36 hours in air or for 36 hours in ethanolic thiol-solution, i.e. either 3,3'-dithiodipropionic acid (DTPA) or thioctic acid (TA). The angle was measured in triplicates with G10 measurement system (Krüss GmbH, Hamburg, Germany).

	Freshly	36 hours	36 hours	36 hours
	strippe	air	DTPA	ТА
	d			
Ι	30 °	67.0 °	23 °	20 °
П	29 °	63.5 °	23 °	20 °
Ш	31°	65 °	23 °	18 °
Ø	30 °	65.1 °	23 °	19.5 °

Fig S1: Exemplary photographs of contact angles of water droplets on gold films before (36 hours incubated at air, left) and after (right) DTPA coating.

1.2 Atomic Force microscopy

Typical sputtered Au films, as Xantec chips (Fig. S2B), exhibit a highly bumpy surface topology, with appearing on length scales comparable to the DNA origami structures used for printing and expected printed patterns. The printing process on such a surface is still possible due to the flexibility of the DNA origami. Nevertheless, since typical sputtered Au films exhibit a significant amount of surface features in the size regime of the studied objects, such Au films are not suitable to study the surface modification processes in the nanoscale by surface topology via AFM.

Therefore, Platypus template stripped Au films freshly stripped from a polished Si-wafer were applied as substrates. Fig S2. compares the surfaces of both Au films, imaged in contact mode by AFM with a Biolever mini cantilever. Fig. S2A demonstrates a very smooth gold surface consisting of large, flat terraces with lateral dimensions of several hundred nm separated by thin grooves. Small topological features onto the terraces lay within in the sub-nanometer height scale.

Fig. S2: Atomic force microscopy was applied to compare (A) Platypus template stripped and (B) Xantec gold surface. Scale bars 200 nm, height scale bar 0 to 3 nm.

1.3 X-Ray Photoelectron Spectroscopy (XPS)

After deposition of self-assembled monolayer onto Platypus gold chip with DTPA (see main text), carboxyl groups presented by DTPA molecules were activated by bioconjugation, through applying EDC and NHS (see main text method section and Fig 1 III). XPS spectra of chips containing non-activated and activated DTPA monolayers were obtained on a Kratos Analytical Ltd. (Manchester, UK) model Axis Ultra. Fig S2 demonstrates that the formation of active NHS-esters causes a noticeable increase of bound elements such as nitrogen (N 1s) as well as oxygen (O 1s) and carbon (C 1s) resulting from the covalent binding of NHS.

Fig S3: X-Ray Photoelectron spectra of (A) DTPA coated Au film and (B) EDC and NHS activated DTPA coated Au film.

1.4 Surface Plasmon Resonance

Surface Plasmon resonance was carried out in order to characterise films that were either printed with DNA origami stamps or with a randomly deposited control of dsDNA segments. The graphs below show the response to streptavidin (STV) application on surfaces containing biotinylated DNA strands applied either to printed patterns or randomly deposited dsDNA segments. For more information see main text.

Fig. S4: Overlay of sensorgrams of initial and reversibility assays with STV for printed sample and a randomly deposited control of dsDNA segments. In the upper sensorgran, STV is applied immediately following the printing or random deposition process. In the lower, biotinylated DNA strands and associated

STV have been removed by NaOH treatment, and new biotinylated complements were added. We note that the sensorgrams were aligned in time to compensate system lags for clarity, but absolute response values are not adjusted. Black arrows indicate streptavidin injection. Sensorgram amplitude deflections directly before and after streptavidin injection correspond to microfluidic pump switches.

1.5 Single Molecule Contact Printing

In principle the experiment was repeated on coated template stripped gold films for reasons that were described in the main text. We hypothesised that a microfluidic system should not be necessary for the basic printing process. However, we assume that microfluidic systems such as that used in the instrument for the above described SPR analysis might be supportive for mixing and flowing fresh reagents across targeted surfaces, thus we increased incubation times and concentrations for printable samples.

Fig. S5: Wide-view AFM image of DNA origami stamp printed and streptavidin probed patterns on DTPA-SAM coated gold film.

Fig. S6A: Additional sections of wide-view image of STV probed printed patterns. Exemplary patterns are highlighted by red boxes. Occurrence of magnified patterns in left to right order. Scale bar of sections 400 nm, scale bar of magnifications 40 nm, height scale bar 0 to 6 nm.

Fig. S6B: Additional sections of wide view image of STV probed printed patterns. Exemplary patterns are highlighted by red boxes. Occurrence of magnified patterns in left to right order. Scale bar of sections 400 nm, scale bar of magnifications 40 nm, height scale bar 0 to 6 nm.

1.5.1 Pattern analysis

AFM images were used to detect patterns and analyse their quality. The Z-Offset was increased to optimise contrast and simplify pattern recognition. Selected patterns had to match height and length criteria as described in the main text. For further analysis, height-profiles were extracted using Gwyddion 2.4 software and aligned profiles plotted in Fig. S7. In total 41 profiles were extracted.

Fig. S7: Overlay of extracted height-profiles. For clarity, height-profiles from images below were aligned in baseline height and centre of width in the plot. The red curve represents mean profile of all 41 detected patterns. The length of the mean profile is ~90 nm, according to the method described in main text.

1.5.1 Negative control

Negative control was treated and AFM imaging was carried out as previously reported in the main text. No stripe patterns are observable.

Fig. S8: Wide-view AFM image of the randomly deposited "negative" control of biotinylated dsDNA segments for random immobilisation and probing with streptavidin. No patterns can be observed.

2. Printing onto bare gold films using thiolated DNA ink strands

A second protocol was applied to test whether the described printing technology is able to accurately separate large (~10 nm diameter) gold-nanoparticles via printing. The protocol is very similar to the work of (Gallego *et al.* 2017) and described in S2.2. The direct printing method was also confirmed for streptavidin molecules similar to what is described in the main text. This is briefly described in 2.1.

The ink strands were labelled with thioctic acid linkers instead of amine (main text). The intramolecular disulphide in thioctic acids is thought to bind more strongly to gold surfaces than single thiols.

2.1 Printing patterns for attachment of STV

For printing patterns directly onto gold for protein (STV) attachment, DNA origami stamps were treated as described in the main text, but hybridized with ssDNA "handles" carrying a 3'-end thioctic acid modification instead of primary amine groups.

A freshly purified origami sample was diluted 1 to 10 with origami buffer. Additionally, the origami treated gold film was incubated at 4 °C for 16 hours. Afterwards the surface was blocked with 1 mM ethanolic mercaptohexanol for 1 hour.

Samples were rinsed in distilled water and the surface-bound DNA origamis were denatured with 25 mM NaOH for 20 s. Again, the samples were rinsed with distilled water and ethanol, then finally dried with a stream of nitrogen gas.

To confirm the printing process with thioctic acid-labels binding directly to bare gold, we first probed the cross pattern also with biotinylated DNA strands and streptavidin, as previously described in main text and analysed via AFM-based imaging. As shown in Fig. S9 the designed cross pattern from the DNA origami was transferred to the surface observable in streptavidin cross patterns with nearly the same dimensions. These results demonstrate, that a printing procedure can be used to arrange proteins in distinct and complex nanopatterns directly on surfaces too. Again it is noteworthy to mention that probably insufficient blocking of unspecific bindings sites, working in non-clean room environment as well as insufficient sample cleaning (contamination of stamp solution with unbound ink strands) results in high background signal.

Fig. S9: Exemplary AFM images of a cross pattern origami (left) and its corresponding printed pattern probed with streptavidin (right). Patterns were highlighted by green arrows.

2.2 DNA Origami Design

To whether the printing technology could be used to precisely separate large nanoparticles from each other, we designed a new pattern on DNA origami stamps consisting of 3 printing areas, which were programmed to have a distance of 40 nm between adjacent gold nanoparticles (80 nm total pattern length) and comprise 3 anchor points as shown below.

Fig. S10: Design of DNA origami stamp for separation of gold-nanoparticles onto pre-printed patterns. Images on the left show atomic force micrographs of (upper) the DNA origami stamp carrying the binding areas and (lower) a zoom in on binding area consisting of 3 identical anchor points. The corresponding schematic representations are shown on the right side.

2.3 Probing with gold-nanoparticles

10 nm (diameter) gold nanoparticles labeled with a 19-base poly-T handle were kindly provided from Robert Schreiber, former fellow in A. Turberfields Lab (Oxford, UK). They were purified by ultrafiltration as previously described for DNA Origami (section 2.3) in a Tris-EDTA buffer. 1 nM of purified nanoparticles were added to samples and incubated for 1 hour. Afterwards the samples were dipped into 50 mL distilled water for 10 seconds, rinsed with ethanol and dried with a stream of nitrogen gas.

2.3.1 AFM

AFM was carried out in the "Quantitative imaging" mode on the JPK Nanowizard 3 described in the main text, in air using SNL-10 cantilever purchased from Bruker Corporation (Billerica, Massachusetts, USA).

An exemplary image is shown below (Fig. S11). From this image nearly 30 height-profiles were extracted (Fig. S12 and S13) as described before for streptavidin with Gwyddion 2.4 Software.

Fig. S11: Atomic force micrograph with immobilized gold nanoparticles arranged in predefined patterns on gold surface.

Fig. S12: The height profiles of several patterns are highlighted by numbered light-blue bars.

Fig. S13: Overlay of extracted height-profiles and a representation of a mean curve (red) after rough manual alignment.

Fig. S13 shows an analysis of height-profiles of some of the observed patterns. The mean peak distance is approximately 50 nm and matches well with our expectations of anchor points separated by approximately 40 nm.

These results demonstrate that the printing onto bare gold surfaces can be easily adapted. Furthermore, the results show that the technology can be used to separate gold-nanoparticles by defined distances, which can be utilised in the generation of plasmonically active surfaces. It is worthwhile to mention that gold-nanoparticles tend to form large scaled clusters on surfaces as seen in Figure S8. We assume that immobilization and washing conditions have to be optimised.

Furthermore, printing with thiolated DNA on gold seems to exhibit only short term stability. The samples were stored at 4 °C, but after 1 week of storage patterns were no longer detectable. We assume that low density SAMs such as this blocking layer, which form during short deposition times (Love *et al.* 2005), allow further rearrangement of SAMs (Wang et al. 2014, Bürgi 2015) and patterns. Therefore, printing on SAMs, as described in the main text, increases overall stability of the deposited pattern.

Printing on pre-deposited SAM bears the advantages of being able to adjust important SAM-enabled properties, such as long term stability or chemical resistance in environments or solvent conditions (e.g. organic phases) that may be hostile to DNA origami stability. Furthermore, the subsequent blocking step in direct printing onto gold may lead to the unwanted substitution of already printed strands, thus further reducing yield (Love et al. 2005).

2.3.2 Scanning Electron Microscopy

Furthermore, SEM was carried out with ULTRA 55 (Carl Zeiss SMT, Oberkochen, Germany). Electron high tension (EHT) of 1.0 kV was applied. Further settings were noted below corresponding image. SEM analysis yielded large, clustered agglomerations of gold nanoparticles on the surface, potentially arising due to drying-induced shear forces, ageing or other artifacts during preparation and storage for imaging.

Fig. S14: Scanning electrode micrographs of printed 3 nanoparticle patterns. The patterns were programmed to be around 50 nm apart. Potential patterns are highlighted by red bars.

3. References

Gallego, Isaac; Manning, Brendan; Prades, Joan Daniel; Mir, Monica; Samitier, Josep; Eritja, Ramon (2017). DNA-Origami-Driven Lithography for Patterning on Gold Surfaces with Sub-10 nm Resolution. Advanced materials.

DOI: 10.1002/adma.201603233

Love, J. Christopher; Estroff,Lara A.; Kriebel, Jennah K.; Nuzzo, Ralph G. and Whitesides, George M. (2005). Chem. Rev, 105, 1103-1169. DOI: 10.1021/cr0300789

Xiaoyu Wang, Yongsuo Liu, Zhenling Chen, Yong Li, Kang Sun, Xingyu Jiang (2014). Diffusion of selfassembled monolayers of thiols on the gold surfaces covered with polydimethylsiloxane stamps. J. Mater SCi., 49, 4394-4398. DOI:10.1007/s10853-014-8148-9

Bürgi Th. (2015) Properties of the gold–sulphur interface: from self-assembled monolayers to clusters. Nanoscale, 7, 15553-15567. DOI: 10.1039/C5NR03497C

4. DNA sequences

Section 4.1 contains all sequences to form a proper rectangular DNA origami structure. All other sections summarize sequences that were replaced in in 4.1.

Unmodified DNA-oligonucleotides were purchased from Eurofins Genomics GmbH, Ebersberg, Germany. All modified DNA-oligonucleotides were purchased from biomers.net GmbH, Ulm, Germany.

4.1 DNA Origami stamp

Oligo name	sequence
s1-oligo1	CTGGCCCTGAGAGAGTTGCAGCAAATAGGGTT
s1-oligo2	AGACGGGCAACAGCTGATTGCCCTAGAGTCCA
s1-oligo3	GGCGCCAGGGTGGTTTTTCTTTTGTCAAAG
s1-oligo4	GAGTGTTGAAGGGAGCCCCCGATTCACGTATA
s1-oligo5	CTATTAAAAGGTGCCGTAAAGCACGAGCGGGA
s1-oligo6	GGCGAAAAACCATCACCCAAATCGATTTTA
s1-oligo7	GACGGGGAAAAAGAATAGCCCGAGGCGGTCCA
s1-oligo8	GAACCCTATTCCAGTTTGGAACATCACCGC
s1-oligo9	TGGGGTCGGAACGTGGACTCCAACCACCAGTG
s1-oligo10	ACGTGCTTCTTCTTTGATTAGTAATCATGGAA
s1-oligo11	GCTAAACATCCATCACGCAAATTACGTCTGAA
s1-oligo12	GACAGGAAAATCAGTGAGGCCACCACCAGT
s1-oligo13	CTTGCCTGTGGTTGCTTTGACGAGTAGAGCTT
s1-oligo14	TAGCAATATCCTCGTTAGAATCATAAATCG
s1-oligo15	AGAGTCTGGGAGGCCGATTAAAGGAAGTTTTT
s1-oligo16	ATACCTACATTAGTCTTTAATGCGGCAACAGT
s1-oligo17	ATGGATTATACGTGGCACAGACAAATGAAAAA
s1-oligo18	CACACGACATAGAACCCTTCTGATCAAATA
s1-oligo19	TAGCCCTAGCAACAGGAAAAACGCTAACATCA
s1-oligo20	GAATGGCTATTTTGACGCTCAATACCGTTG
s1-oligo21	CGTAAGAATTTACATTGGCAGATTCGAGTAAA
s1-oligo22	GCCACGCTTAGAGCCGTCAATAGAAGTAACAT
s1-oligo23	TCTAAAGCATATCTTTAGGAGCACCCACCAGA
s1-oligo24	TCAAACCCAGTTGAAAGGAATTGCTGATTA
s1-oligo25	TTGAGGATAGTATTAACACCGCCTCGAACTGA
s1-oligo26	TAATAGATGAGAGCCAGCAGCAATATTTTT
s1-oligo27	TATCTAAAATCACCTTGCTGAACCCCTGAAAG
s1-oligo28	TATCATTTACAGAAATAAAGAAATACCAAGTT
s1-oligo29	AGGAGCGGACCTACCATATCAAAAATTCATTT
s1-oligo30	TCAGATGAGATTATACTTCTGAAATGAAAC
s1-oligo31	TTTTCAGGTAATTTTAAAAGTTTGTAATACAT
s1-oligo32	CACGTAAATGCGGAACAAAGAAATAACAAC
s1-oligo33	GGGTTAGAAATTATCATCATATTCAGGAAGGT
s1-oligo34	ACAAAATCGCTTCTGTAAATCGTCGGTCTGAG

Oligo name	sequence
s2-oligo1	GCGCAACTGTTGGGAAGGGCGATCATTCTCCG
s2-oligo2	ACCAGGCAAAGCGCCATTCGCCATAATGGG
s2-oligo3	CCAGCTTTCCGGCACCGCTTCTGGCGCATCGT
s2-oligo4	TGGGAACAATCAAAAATAATTCGCTGAGAGTC
s2-oligo5	ATAGGTCAATCAGCTCATTTTTTACGGTAA
s2-oligo6	AACCGTGCTTTTGTTAAAATTCGCATGTACCC
s2-oligo7	CTTCCTGTGTAACAACCCGTCGGGGTGCGG
s2-oligo8	GGAACGCCAACGGCGGATTGACCGTTCAGGCT
s2-oligo9	TTTGTTAACGTTGGTGTAGATGGGTGCCGGAA
s2-oligo10	TGGAGCAAAACCGTTCTAGCTGATGCCTCAGA
s2-oligo11	TCGTAAAAAGACAGTCAAATCACAAAAACA
s2-oligo12	CGGTTGATAGGTAAAGATTCAAAAGGAGAAGC
s2-oligo13	TGCCGGAGTATCAGGTCATTGCCGTCTGGC
s2-oligo14	TGATATTCACAAGAGAATCGATGAAACCAATA
s2-oligo15	AAGGCCGGCTAGCATGTCAATCATATTAAATT
s2-oligo16	GCATAAAGATTCTACTAATAGTAGTTAATTGC
s2-oligo17	TTATGACCATTTGGGGCGCGAGCTGTTTTA
s2-oligo18	CTTTATTTAAATGGTCAATAACCTTGGAAGTT
s2-oligo19	ΑΑCATCCAAAATTAAGCAATAAAAAATTAA
s2-oligo20	TGGCATCACTAAATCGGTTGTACCCATCAATA
s2-oligo21	ATATTTTCCTGTAATACTTTTGCGGGGTGAGA
s2-oligo22	TGAATATAACTCCAACAGGTCAGGATCGTCAT
s2-oligo23	AATATGCACGAGCTTCAAAGCGAATGCTTT
s2-oligo24	TCATTCCAGCCCGAAAGACTTCAACCATAAAT
s2-oligo25	AGTACCTTCGGATGGCTTAGAGCTAGCATT
s2-oligo26	GGAAGCAAATGCTGTAGCTCAACATGAAAAGG
s2-oligo27	TTTTAATTACTAAAGTACGGTGTCGTTTAGCT
s2-oligo28	AAATATTCAGAGGCTTTTGCAAAATCAGGACG
s2-oligo29	AAACAGTTTTACCAGACGACGATAAAACGA
s2-oligo30	CAAAAATCCATAGTAAGAGCAACAGTAGAAAG
s2-oligo31	TGCCAGAGGTCCAATACTGCGGAATTAGAG
s2-oligo32	AAATAGCGATTGAATCCCCCTCAAACCAGACC
s2-oligo33	ACCCTCGTCAGAAAACGAGAATGAATATCGCG
s2-oligo34	TTGGGAAGGGCTTGAGATGGTTTACGGTCAAT

Oligo name	sequence	Oligo name	sequence
s1-oligo35	CAATTACCCATAAATCAATATATGTTAGGTTG	s2-oligo35	ACTAACGGGACGAGAAACACCAGTTTGAAA
s1-oligo36	AAACATCAATTTGAATTACCTTTTGATGCA	s2-oligo36	ATTCATCAAAGCTGCTCATTCAGTCCAGGCGC
s1-oligo37	TTAATTTTCCTGATTGCTTTGAATTGCGTAGA	s2-oligo37	CTTTAATCGGCTCATTATACCAGGAAGTTT
s1-oligo38	ATAACCTTGCGCAGAGGCGAATTTTATTTG	s2-oligo38	GTAAATTGAAAAATCTACGTTAATAAAAACCA
s1-oligo39	AAACAGTATGAGCAAAAGAAGATGTAATGGAA	s2-oligo39	CTTGCCCTAACAACATTATTACAGCTATCATA
s1-oligo40	AGACTACCGATAAATAAGGCGTTACAGTAGGG	s2-oligo40	CATAAGGGAGATTTGTATCATCGCAAAGACAG
s1-oligo41	GGTTATATTAAATTTAATGGTTTGAACAACGC	s2-oligo41	GAGGACAGATTATACCAAGCGCGTACAGAG
s1-oligo42	AATCCAATAATATATTTTAGTTATTTTCGA	s2-oligo42	ATAGGCTGTACACTAAAACACTCAATGAGGAA
s1-oligo43	ΤΑΑΑCACCATTTATCAAAATCATAGCTATTAA	s2-oligo43	ATTGTGTCGGAACGAGGCGCAGAATTTCAA
s1-oligo44	GACCGTGTTTTTTAACCTCCGGCTGAGTGA	s2-oligo44	TACAACGGAACCGAACTGACCAACAACGAGTA
s1-oligo45	TTCTGACCAACTATATGTAAATGCTTTAATGG	s2-oligo45	CCCCAGCGATGAACGGTGTACAGAGAATAAGG
s1-oligo46	CTTAATTGATCAACAATAGATAAGTTAAACCA	s2-oligo46	CATCGGAAGCATAACCGATATATTACTTTCAA
s1-oligo47	CAACATGTCATGTTCAGCTAATGCGCAAGCCG	s2-oligo47	GCTTTGAGTGCGCCGACAATGACAAGGAAC
s1-oligo48	GCCAGTAAGTAATTCTGTCCAGATTACCGC	s2-oligo48	GTTTCCATGTGAATTTCTTAAACATTTTTTCA
s1-oligo49	AAGAAAAATAAAGCCAACGCTCAAAATAAGAA	s2-oligo49	TGAGGCTTTCACCCTCAGCAGCGCTGATAA
s1-oligo50	GCCTGTTTAGAATCGCCATATTTAAATACC	s2-oligo50	TCGCCCACCGAGGGTAGCAACGGCAAACAAAG
s1-oligo51	ATAAACAAAATTTAGGCAGAGGCAATTTCATC	s2-oligo51	CCGATAGTGACTAAAGACTTTTTCTCTTTGAC
s1-oligo52	AGTACCGCAATCAAGATTAGTTGCATTATTTA	s2-oligo52	CAGTTTCAGTTAGCGTAACGATCTGTATAGCC
s1-oligo53	TTTTTATTCTCCCGACTTGCGGGATTTTTGTT	s2-oligo53	AACTAAAGCGCCTGTAGCATTCCAGGAGGT
s1-oligo54	GCCCAATATATTCTAAGAACGCGCCTTTAC	s2-oligo54	CGTTGAAAACACTGAGTTTCGTCACCACCCTC
s1-oligo55	ACCCAGCTATTCCAAGAACGGGTATCCTGAAC	s2-oligo55	TGTCGTCTGGATTTTGCTAAACACGGTCGC
s1-oligo56	AAGCCTTAACTCATCGAGAACAAAGAACGC	s2-oligo56	CCCTCATAGCGGAGTGAGAATAGAAACAACCA
s1-oligo57	TAGCGAACTTCATCGTAGGAATCACGACGACA	s2-oligo57	AACTACAAGAATTGCGAATAATAAGCTTGATA
s1-oligo58	TCCCAATCACCCACAAGAATTGAGACCAGAAG	s2-oligo58	CGGAATAGTCCTCAAGAGAAGGATCATTAAAG
s1-oligo59	TAACGTCAAGGGTAATTGAGCGCTACGGAATA	s2-oligo59	TTAGTACCCTGAAACATGAAAGTAATTTAC
s1-oligo60	AGAGAGAAAGAATTAACTGAACAACTCCTT	s2-oligo60	AGAACCGCAATGCCCCCTGCCTATCTTTTGAT
s1-oligo61	AATAATAACAAAATAAACAGCCATTATTTTGC	s2-oligo61	AGCGGGGTAGAGGGTTGATATAAAAAGTTT
s1-oligo62	GAGAGATACAAATAAGAAACGATGGTTTTG	s2-oligo62	GCTGAGACGTGTATCACCGTACTCACAGACAG
s1-oligo63	AAAGTCAGAAAATGAAAATAGCAGAGGCGTTT	s2-oligo63	CTATTATTGCCACCCTCAGAACCGCCAGTACA
s1-oligo64	GAAACCGAAATAGAAAATTCATATCCGTCACC	s2-oligo64	CCAGAATGCAGAGCCGCCGCCAGCAGAATCAA
s1-oligo65	CCCAAAAGCACCACGGAATAAGTTAGCCAGCA	s2-oligo65	CGTTCCAGCCACCCTCAGAGCCGGCGCGTT
s1-oligo66	ATTACGCAAAGGTGGCAACATATTTAGCAA	s2-oligo66	GATACAGGCGCCACCCTCAGAACCCCCCTTAT
s1-oligo67	AGCGCCAAATAGCCGAACAAAGTTTTAAGCCC	s2-oligo67	GGAGGTTGAAACAAATAAATCCTTAGGATT
s1-oligo68	TCACAATCGGAAACGCAATAATAAATATCA	s2-oligo68	ACCACCACGAAAGCGCAGTCTCTGATTAAGAG
s1-oligo69	CGCAAAGAAACTGGCATGATTAAGCCCTGAAC	s2-oligo69	CAGAGCCATAAGCGTCATACATGGTTCGGAAC
s1-oligo70	TTATTCATTAAAGGTGAATTATCAGGTTTACC	s2-oligo70	GCAGCACCGTAATCAGTAGCGACATTGACA
s1-oligo71	GACTTGAGCCATTTGGGAATTAGTATTTTG	s2-oligo71	GTTTGCCTTTAGCGTCAGACTGTACCACCAGA
s1-oligo72	AAATCACCAGTAGCACCATTACCAAAAAGAAA	s2-oligo72	TTCATCGGCATTTTCGGTCATAGCGCCACCCT
con-oligo1	GCCTCTTCGCTATTACGCCAGCTGGCGTATTG	end-oligo1	CGCTGGTTTGCCCCAGCAGGCGAAAAATCCCT
con-oligo2	GTGAGCGAAGCCAGCTTTCATCAAATGGCCCA	end-oligo2	TATAAATCAAGCCGGCGAACGTGGTACAGGGC
con-oligo3	CTACGTGAACCGTCTATCAGGGCGCATTAAAT	end-oligo3	CGTTAATAATCTGCCAGTTTGAGGCACTCCAG
con-oligo4	ACAAAGGCAGGGTAGCTATTTTTGTGAGAAGT	end-oligo4	GCGTACTAAGTAGAAGAACTCAAAATTACCGC

Oligo name	sequence	Oligo name	sequence
con-oligo5	GTTTTTATCGGTACGCCAGAATCCAGAGATCT	end-oligo5	TAATGTGTAATCAGAAAAGCCCCAATTGTAAA
con-oligo6	AATTAGCAATAAATCATACAGGCAATTCTGGC	end-oligo6	CAGCCATTAAACATCGCCATTAAACAGAGGTG
con-oligo7	CAACAGAGCAGTAATAAAAGGGACAGGCAAAG	end-oligo7	CATTTCGCCAACGCAAGGATAAAATGCCTGAG
con-oligo8	CATTTTTGTAATTGCTCCTTTTGACAGTTGGC	end-oligo8	AGGCGGTCTTAGAAGTATTAGACTTTTGCCCG
con-oligo9	AAATCAACTCAATCAATATCTGGTTAAGAGGT	end-oligo9	AAGAGGAATATAACAGTTGATTCCATTAGATA
con-oligo10	TGGATAGCGGGGTAATAGTAAAATTAATCCTG	end-oligo10	AACGTTATTTTAACGTCAGATGAAAACAATAA
con-oligo11	ATTGTTTGTGGCAATTCATCAATAGTTTAGAC	end-oligo11	TTACGAGGAGGTCTTTACCCTGACAAAAGATT
con-oligo12	TAAGAACTATTGTGAATTACCTTATACATTTA	end-oligo12	CGGATTCGCCCTTAGAATCCTTGAGAAGAGTC
con-oligo13	ACAATTTCAGAAAACAAAATTAATTGCGATTT	end-oligo13	ACGTAACAGTTGAGATTTAGGAATAAAAGGAA
con-oligo14	ACTTAGCCGAAATCCGCGACCTGCCGAGAAAA	end-oligo14	AATAGTGAGGAATCATAATTACTACAAATTCT
con-oligo15	CTTTTTCACGCAAGACAAAGAACGTCCATGTT	end-oligo15	CAAAAGAAGCTGACCTTCATCAAGCCAAATCA
con-oligo16	CGGGATCGGCAGGGAGTTAAAGGCACCGACAA	end-oligo16	TACCAGTATAATATCCCATCCTAAGCTGTCTT
con-oligo17	AAGGTAAATAAGAGAATATAAAGTCGCTTTTG	end-oligo17	CTTTCGAGTAAACGGGTAAAATACGAAAGAGG
con-oligo18	TCTGTATGTTCCAGACGTTAGTAATAGAAGGC	end-oligo18	TCCTTATCACAATTTTATCCTGAACCTAATTT
con-oligo19	TTATCCGGGCAAGCAAATCAGATAATGAATTT	end-oligo19	GTACCGTAATCTCCAAAAAAAAGGTCAGCTTG
con-oligo20	TGCCGTCGTTTGCTCAGTACCAGGAAGCGCAT	end-oligo20	GCCAGTTAGAGCAAGAAACAATGATAAGAAAA
con-oligo21	TAGACGGGTAACATAAAAACAGGGCGGATAAG	end-oligo21	AAACAGTTCACCCTCAGAGCCACCGAACCCAT
con-oligo22	ATATTCACAGGCAGGTCAGACGATAGAAAATA	end-oligo22	GTAAGCAGAGACAAAAGGGCGACAGACGGAAA
con-oligo23	CATACATAGTATGTTAGCAAACGTTGGCCTTG	end-oligo23	CTCAGAGCAGTGTACTGGTAATAAGCCCGTAT
con-oligo24	GGCCGGAAACGTCACCAATGAAACCATCGATA	end-oligo24	TAGCGTTTGCCATCTTTTCATAATCCGCCTCC

4.2 Stripe pattern overhangs and handles

Oligo name	sequence
c2 c24 band	GCAAGACCTCGCAACTTTTGGGAAGGGCTTGAGAT
sz-034_nanu	GGTTTACGGTCAAT
c2 c2E band	GCAAGACCTCGCAACTTACTAACGGGACGAGAAAC
sz-055_nanu	ACCAGTTTGAAA
c2 c26 band	GCAAGACCTCGCAACTTATTCATCAAAGCTGCTCAT
sz-050_nanu	TCAGTCCAGGCGC
s1 o24 hand	GCAAGACCTCGCAACTTACAAAATCGCTTCTGTAAA
31-034_nanu	TCGTCGGTCTGAG
c1 o2E band	GCAAGACCTCGCAACTTCAATTACCCATAAATCAAT
31-035_nanu	ATATGTTAGGTTG
s1 o26 band	GCAAGACCTCGCAACTTAAACATCAATTTGAATTAC
S1-050_Hallu	CTTTTGATGCA
con-	GCAAGACCTCGCAACTTTAAGAACTATTGTGAATT
o12_hand	ACCTTATACATTTA
end-	GCAAGACCTCGCAACTTCGGATTCGCCCTTAGAAT
o12_hand	CCTTGAGAAGAGTC
INK	GTTGCGAGGTCTTGCTT-amine

Oligo name	sequence
c2 c27 band	GCAAGACCTCGCAACTTCTTTAATCGGCTCATTATA
sz-057_nanu	CCAGGAAGTTT
c2 o28 band	GCAAGACCTCGCAACTTGTAAATTGAAAAATCTAC
32-038_fianu	GTTAATAAAAACCA
c2 c20 hand	GCAAGACCTCGCAACTTCTTGCCCTAACAACATTAT
32-039_Hallu	TACAGCTATCATA
s1-037 hand	GCAAGACCTCGCAACTTTTAATTTTCCTGATTGCTTT
31-057_Hand	GAATTGCGTAGA
s1-038 hand	GCAAGACCTCGCAACTTATAACCTTGCGCAGAGGC
31-050_Halld	GAATTTTATTTG
s1-039 hand	GCAAGACCTCGCAACTTAAACAGTATGAGCAAAAG
31-055_Halld	AAGATGTAATGGAA
con-	GCAAGACCTCGCAACTTACAATTTCAGAAAACAAA
o13_hand	ATTAATTGCGATTT
end-	GCAAGACCTCGCAACTTACGTAACAGTTGAGATTT
o13_hand	AGGAATAAAAGGAA
BIO	Biotin-TEG-AAGCAAGACCTCGCAAC

4.3 Cross pattern overhangs and handles

Oligo name	sequence
c2 c27 band	GCAAGACCTCGCAACTTCTTTAATCGGCTCATTATA
sz-037_nanu	CCAGGAAGTTT
c2 c28 hand	GCAAGACCTCGCAACTTGTAAATTGAAAAATCTAC
52-058_Hallu	GTTAATAAAAACCA
c2 c20 band	GCAAGACCTCGCAACTTCTTGCCCTAACAACATTAT
52-059_11a11u	TACAGCTATCATA
s1 o27 band	GCAAGACCTCGCAACTTTTAATTTTCCTGATTGCTTT
31-037_Hallu	GAATTGCGTAGA
c1 o28 band	GCAAGACCTCGCAACTTATAACCTTGCGCAGAGGC
31-038_Hallu	GAATTTTATTTG
s1 o20 band	GCAAGACCTCGCAACTTAAACAGTATGAGCAAAAG
31-039_Hallu	AAGATGTAATGGAA
con-	GCAAGACCTCGCAACTTACAATTTCAGAAAACAAA
o13_hand	ATTAATTGCGATTT
end-	GCAAGACCTCGCAACTTACGTAACAGTTGAGATTT
o13_hand	AGGAATAAAAGGAA
con-	GCAAGACCTCGCAACTTGTGAGCGAAGCCAGCTTT
oligo2_cr_1	CATCAAATGGCCCA
INK_th	GTTGCGAGGTCTTGCTT-thioctic acid

Oligo name	sequence
con-	GCAAGACCTCGCAACTTACAAAGGCAGGGTAGCTA
oligo4_cr_1	TTTTTGTGAGAAGT
con-	GCAAGACCTCGCAACTTAATTAGCAATAAATCATAC
oligo6_cr_1	AGGCAATTCTGGC
con-	GCAAGACCTCGCAACTTCATTTTTGTAATTGCTCCT
oligo8_cr_1	TTTGACAGTTGGC
con-	GCAAGACCTCGCAACTTTGGATAGCGGGGTAATAG
oligo10_cr_1	TAAAATTAATCCTG
con-	GCAAGACCTCGCAACTTACTTAGCCGAAATCCGCG
oligo14_cr_1	ACCTGCCGAGAAAA
con-	GCAAGACCTCGCAACTTCGGGATCGGCAGGGAGT
oligo16_cr_1	TAAAGGCACCGACAA
con-	GCAAGACCTCGCAACTTTCTGTATGTTCCAGACGTT
oligo18_cr_1	AGTAATAGAAGGC
con-	GCAAGACCTCGCAACTTTGCCGTCGTTTGCTCAGTA
oligo20_cr_1	CCAGGAAGCGCAT
con-	GCAAGACCTCGCAACTTATATTCACAGGCAGGTCA
oligo22_cr_1	GACGATAGAAAATA
BIO	Biotin-TEG-AAGCAAGACCTCGCAAC

4.4 '3 spot' patterns for gold nanoparticles

Oligo name	sequence
3'pT-s1-	TAAACACCATTTATCAAAATCATAGCTATTAATTTTT
oligo43	ттттттттт
3'pT-con-	TAAGAACTATTGTGAATTACCTTATACATTTATTTTT
oligo12	ттттттттт
3'pT-con-	ACAATTTCAGAAAACAAAATTAATTGCGATTTTTT
oligo13	тттттттттт
3'pT-con-	CTTTTTCACGCAAGACAAAGAACGTCCATGTTTTT
oligo15	тттттттттт
3'pT-s2-	CAAAAATCCATAGTAAGAGCAACAGTAGAAAGTTT
oligo30	ттттттттт

Oligo name	sequence
3'pT-s2-	ATTCATCAAAGCTGCTCATTCAGTCCAGGCGCTTTT
oligo36	тттттттттт
3'pT-end-	AACGTTATTTTAACGTCAGATGAAAACAATAATTTT
oligo10	тттттттттт
3'pT-end-	CGGATTCGCCCTTAGAATCCTTGAGAAGAGTCTTTT
oligo12	тттттттттт
3'pT-end-	CAAAAGAAGCTGACCTTCATCAAGCCAAATCATTTT
oligo15	тттттттттт
INK_th	AAAAAAAAAAAAAAAAThioctic acid