Supporting Information

Black TiO\textsubscript{2} based core-shell nanocomposites as doxorubicin carriers for thermal imaging guided synergistic therapy of breast cancer

\textit{Wenzhi Rena, M. Zubair Iqbala, Leyong Zenga, Tianxiang Chena, Yuanwei Pana, Jinshun Zhaob, Hao Yinc, Lili Zhangd, Jichao Zhangd, Aiguo Lid, Aiguo Wua**}

a, CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, 315201, Ningbo, China

b, Public Health Department, Ningbo University, 818 Fenghua Road, 315211, Ningbo, China

c, Shanghai Youlan Scientific Co., Ltd., No. 8, Zunyi South Road, Changning District, 200051, Shanghai, China

d, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China

*Corresponding author: Aiguo Wu
Figure S1. Cell viability of MCF-7 breast cancer cells after incubated with ~300 µg mL$^{-1}$ of NC or NC-FA for 24 h. Data are expressed as the mean ± standard (n = 5).

Figure S2. Histological analyses of mice main organs injected with PBS, NC or NC-FA. Scale bar is 20µm.