Supporting Information for

Hollow Au₃Ag/Au core/shell nanospheres as efficient catalysts for
electrooxidation of liquid fuels

Hui Xu, a Jin Wang, a Bo Yan, a Ke Zhang, a Shumin Li, a Caiqin Wang, a,b Yukihide Shiraishi, c Yukou Du, a,c* and Ping Yang a*

a College of Chemistry, Chemical Engineering and Materials Science, Soochow University,
Suzhou 215123, PR China
b Chemistry department, University of Toronto, Toronto M5S3H4, RP Canada.
c Tokyo University of Science Yamaguchi, Sanyo-Onoda-shi, Yamaguchi 756-0884, Japan

* Corresponding author: Tel: 86-512-65880089, Fax: 86-512-65880089;
E-mail: duyk@suda.edu.cn (Y. Du).
Fig. S1 Representative SEM images of hollow Au$_x$Ag/Au core/shell nanospheres with different magnifications.

Fig. S2 Representative TEM images of AuAg nanocrystals prepared in the absence of CTAC with different magnifications, while keep other conditions unchanged.
Fig. S3 CV curves of (A) EGOR and (B) GOR on Au$_2$Ag$_1$ modified electrodes at different scan rates.
And the corresponding plot of forward peak current (I_f) versus the square root of the scan rate ($v^{1/2}$) (C and D).