Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Rare Earth Ions Enhanced Near Infrared Fluorescence of Ag₂S Quantum Dots for the Detection of Fluoride Ions in Living Cells

Caiping Ding, Xuanyu Cao, Cuiling Zhang,*, Tangrong He, Nan Hua, Yuezhong Xian,*

*Corresponding authors: clzhang@chem.ecnu.edu.cn; yzxian@chem.ecnu.edu.cn (Y.Z. Xian) Tel

&Fax: +86-21-54340046.

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry,

School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241,

China

Fig. S1 The hydrodynamic size of Ag₂S QDs measured by dynamic light scattering.

Fig. S2 XPS spectra of (A) Ag 3d and (B) S 2p for Ag₂S QDs.

Fig. S3 Absorbance (A) and fluorescence (B) spectra of the Ag_2S QDs at different reaction time, the normalized fluorescence intensity and peak position of the Ag_2S QDs at different reaction pH value (C) and (D) the pH stability toward the Ag_2S particles. Inset of (B) is the normalized fluorescence spectra.

Fig. S4 The fluorescence intensity of Ag_2S QDs was enhanced by various trivalent rare earth ions. F and F_0 are corresponding to the fluorescent intensity of Ag_2S QDs in presence or absence of rare earth ion, respectively.

Fig. S5 Fluorescence stability of the rare earth ions conjugated $Ag_2S QD_3$ (A) and the fluorescence decay curves of QDs (B) in the absence and presence of different rare earth ions (including Ce³⁺, Eu³⁺, Gd³⁺, Dy³⁺, Ho³⁺, Er³⁺, Tm³⁺, Yb³⁺ and Y³⁺, respectively).

Cations	Zeta potential (mV)	Hydrodynamic size (nm)
H ₂ O	-44.6	7.5
Gd^{3+}	-15.5	167
Ce^{3+}	-18.5	158
Eu ³⁺	-23.9	142
Y ³⁺	-26.0	129
Tm^{3+}	-32.5	113
Ho ³⁺	-32.8	109
Er ³⁺	-36.5	100
Yb ³⁺	-38.1	79
Dy^{3+}	-39.7	60

Table S1: Zeta potential and hydrodynamic size of the Ag₂S QDs colloidal in presence of different rare earth ions.

Fig. S6 TEM images of Ag₂S QDs in the presence of Gd³⁺ (185 μ M).

Fig. S7 The hydrodynamic size of Ag₂S QDs with increased concentration of Gd³⁺ measured by DLS.

 $\label{eq:Fig. S8} \ensuremath{\mathsf{Fig. S8}} \ensuremath{\mathsf{XPS}} \ensuremath{\mathsf{spectra}}\xspace{0.5ex} \ensuremath{\mathsf{Gd}}\xspace{3+-} \ensuremath{\mathsf{Ag}}\xspace{2} \ensuremath{\mathsf{S}}\xspace{0.5ex} \ensuremath{\mathsf{Ag}}\xspace{0.5ex} \en$

Fig. S9 The fluorescence decay curves of Ag₂S QDs, Ag₂S QDs+Gd³⁺ (185 μ M), Ag₂S QDs+Gd³⁺ (185 μ M) +F⁻ (300 μ M).

Fig. S10 The fluorescence of rare earth ions conjugated Ag₂S QDs are quenched by F⁻ (left) and fluorescence response of rare earth ions conjugated Ag₂S QDs for different concentration of F⁻ (right), (rare earth ions = Ce³⁺, Eu³⁺, Gd³⁺, Dy³⁺, Ho³⁺, Er³⁺, Tm³⁺, Yb³⁺ and Y³⁺, respectively).

Fig. S11 The hydrodynamic size of Gd^{3+} - Ag_2S QDs with increased concentration of F⁻ measured by DLS.

Fig. S12 The selectivity of the rare earth ions conjugated Ag₂S QDs nanoprobe for F⁻ detection by monitoring the emission at 795 nm. The concentration of different anions are 250 μ M. F₀ and F are the fluorescence intensity in the absence and presence of anions. (rare earth ions = Ce³⁺, Eu³⁺, Dy³⁺, Ho³⁺, Er³⁺, Tm³⁺, Yb³⁺ and Y³⁺, respectively).

Fig. S13 Photostability of Gd^{3+} - Ag_2S complex in MDA-MB-468 cells. The scale bar is 50 μ m.

Fig. S14 Confocal images for MDA-MB-468 cells under different conditions. (a) Control, (b) NaF (800 μ M), (c) NaF (1600 μ M), (d) NaF (2400 μ M), (e) Ag₂S QDs (150 μ g/ml), (f) Ag₂S QDs (150 μ g/ml) and NaF (2400 μ M). The scale bar is 50 μ m.

Sensor	Detection Range	Detection of	Ref.	
	Detection Range	limit	Our work	
CuInS ₂ QDs	0.1 - 700 μM	0.029 μΜ	[32]	
Fe ₃ O ₄ @SiO ₂ @Carbon QD	1-20 µM	0.06 µM	[29]	
GO-AgNPs	0.05-0.55 nM	9.07 pM	[30]	
CdTe QDs	0-10 mM	5.0 µM	[28]	
CdS/ZnS nanoparticles	300-5600 μM	74.0 µM	[27]	
Ag doped CdS/ZnS nanoparticles	10-1200 μM	5.25 µM	[16]	
SiNWs	0.7 - 1.2 μM	1 µM	[34]	
rare earth ion conjugated Ag ₂ S QDs	5-260 µM	1.5 μM	Our work	

Table S2: Comparison of the sensor performance for F⁻ detection.

Table S3: The detection of F^- in living cells by fluoride-ion-selective electrode (FISE) and proposed method.

	Cells Lysates	
Cultured F ⁻ [µM]	F ⁻ [µM] /FISE	F ⁻ [µM] /proposed method
800	92.420 ± 0.054	91.579±0.011
1600	153.716 ± 0.024	149.230 ± 0.050
2400	230.865 ± 0.034	229.620 ± 0.011