Preventing Sintering of Nanoclusters on Graphene by Radical Adsorption

A. J. Martínez-Galera*,¹,⁴ U. A. Schröder,¹ C. Herbig,¹ M. A. Arman,² J. Knudsen,²,³ and T. Michely,¹

¹ II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany.

² Division of Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden.

³ MAXIV Laboratory, Lund University, Box 118, SE-221 00 Lund, Sweden.

⁴ Present address: Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
Qualitative analysis of the thermal stability of clusters before and after the exposure to radicals of D and O

Figure S1. STM study of the evolution of Pt (0.4 ML) clusters on Gr/Ir(111), before and after the exposure to D and O radicals, along subsequent annealing cycles of 300 s in intervals of 50 K at temperatures in the range 500-700 K. a)-e) Sequence of STM topographs acquired on the pristine sample –without radicals–; f)-j) Sequence of STM images acquired after the exposure of the pristine sample to 1.8 L atomic D; k)-o) Sequence of STM topographs obtained after the exposure of the as-grown clusters on graphene/Ir(111) to 1.8 L atomic O. Tunnelling parameters: a) $V_s = +0.8\ V$, $I_T = 0.62\ \text{nA}$, b) $V_s = +2.1\ V$, $I_T = 0.18\ \text{nA}$, c) $V_s = +2.1\ V$, $I_T = 0.084\ \text{nA}$, d) $V_s = +2.1\ V$, $I_T = 0.076\ \text{nA}$, e) $V_s = +2.1V$, $I_T = 0.092\ \text{nA}$, f) $V_s = +1.8\ V$, $I_T = 1.0\ \text{nA}$, g) $V_s = +1.6\ V$, $I_T = 0.34\ \text{nA}$, h) $V_s = +1.8\ V$, $I_T = 0.23\ \text{nA}$, i) $V_s = +1.8\ V$, $I_T = 0.39\ \text{nA}$, j) $V_s = +1.8\ V$, $I_T = 0.26\ \text{nA}$, k) $V_s = +2.1\ V$, $I_T = 0.4\ \text{nA}$, l) $V_s = +1.9\ V$, $I_T = 0.46\ \text{nA}$, m) $V_s = +2.6\ V$, $I_T = 0.32\ \text{nA}$, n) $V_s = +2.7\ V$, $I_T = 0.3\ \text{nA}$, o) $V_s = +1.8\ V$, $I_T = 0.46\ \text{nA}$. The size is 90 × 90 nm2 for all of the topographs.
Quantitative analysis of the thermal stability of clusters before and after the exposure to radicals of D and O

Figure S2. Histograms illustrating the evolution of the apparent height distribution are shown for a)-e) a pristine sample, that is in absence of radicals, f)-j) a pristine sample after the exposure to 1.8 L atomic D and k)-o) a pristine sample after the exposure to 1.8 L atomic O.

Influence of the exposure amount to O radicals on the thermal stability of clusters

Figure S3. Study of the evolution of Pt (0.4 ML) clusters adsorbed on Gr/Ir(111) after the exposure to 0.45 L atomic oxygen and sequential 300 s annealing steps of 50 K between 500 K and 700 K. Tunneling parameters: a) $V_s = +1.8 \text{ V}$, $I_T = 0.085 \text{ nA}$, b) $V_s = +1.9 \text{ V}$, $I_T = 0.11 \text{ nA}$, c) $V_s = +1.9 \text{ V}$, $I_T = 0.12 \text{ nA}$, d) $V_s = +1.9 \text{ V}$, $I_T = 0.089 \text{ nA}$, e) $V_s = +2.2 \text{ V}$, $I_T = 0.07 \text{ nA}$. The size is $90 \times 90 \text{ nm}^2$ for all of the topographs.
Influence of the exposure to molecular oxygen on the thermal stability of clusters

Figure S4. Sequence of STM topographs illustrating the thermal stability of clusters grown by depositing 0.4 ML Pt on Gr/Ir(111) after the exposure to 1.8 L molecular oxygen and sequential annealing steps of 300 s between 500 and 700 K in intervals of 50 K. Tunneling parameters: a) \(V_s = +1.6 \text{ V} \), \(I_T = 0.11 \text{ nA} \), b) \(V_s = +1.6 \text{ V} \), \(I_T = 0.094 \text{ nA} \), c) \(V_s = +1.6 \text{ V} \), \(I_T = 0.1 \text{ nA} \), d) \(V_s = +1.8 \text{ V} \), \(I_T = 0.098 \text{ nA} \), e) \(V_s = +2.0 \text{ V} \), \(I_T = 0.082 \text{ nA} \). The size is 90 × 90 nm

Quantitative analysis of the exposure amount to O radicals

Figure S5. Estimation of the area fraction of holes induced by graphene etching. a) STM topograph after the final annealing step for a sample, where at 300 K an amount of 0.4 ML Pt had been deposited and subsequently exposed to 1.8 L atomic O. b) Schematics highlighting the area covered by clusters, which is 34.2 % of the image size. c) Schematics highlighting the area occupied by the holes in graphene, which is 4.6 % of the image area, i.e. the hole area has a fraction of 7 % of the uncovered graphene area. Tunneling parameters: a) \(V_s = +1.8 \text{ V} \), \(I_T = 0.46 \text{ nA} \); size 43 × 43 nm