Supporting Information

The Effects of Exfoliation, Organic Solvents and Anodic Activation on Catalytic Hydrogen Evolution Reaction of Tungsten Disulfide

Wanglian Liu,^{a, b} John Benson,^c Craig Dawson,^c Andrew Strudwick,^c Arun Prakash Aranga Raju,^c

Yisong Han, ^a Meixian Li,^{*, b} and Pagona Papakonstantinou^{*, a}

^a School of Engineering, Engineering Research Institute, Ulster University, Newtownabbey

BT37 0QB, United Kingdom.

^b College of Chemistry and Molecular Engineering, Peking University, Beijing 100871,

People's Republic of China.

^c 2-DTech Ltd, Core Technology Facility, 46 Grafton St, Manchester M13 9NT, United Kingdom.

*Corresponding authors' e- mails: lmwx@pku.edu.cn; p.ppakonstantinou@ulster.ac.uk

Fig. S1 XPS surveys of WS₂ bulk and WS₂ 10K.

Fig. S2 Polarization curves of electrodes modified with i) freshly prepared WS_2 10K dispersion; ii) WS_2 10K dispersion 1 month old (1 month); iii) WS_2 10K dispersion 1 month old, washed with toluene and iv) WS_2 10K dispersion 1 month old, washed with o-dichlorobenzene (o-DCB).

Fig. S3 Polarization curves of the electrodes modified with fresh 0.5K, 1K, 3K and 10K dispersions before (full lines) and after (dashed lines) washing with acetone.

Fig. S4 XPS surveys of a GCE electrode modified with 1 month old WS_2 10K dispersion before and after cleaning with acetone.

Fig. S5 High-resolution N1s core level XPS spectra from a GCE electrode modified with 1 month old WS₂ 10K dispersion before and after cleaning in acetone.

Fig. S6 Electrochemical impedance spectra of the electrodes modified with i) freshly prepared WS₂ 10K dispersion; ii) WS₂ 10K dispersion 1 month old and iii) WS₂ 10K dispersion 1 month old, washed with acetone. The measurements were conducted in 0.1 M KCl-0.01 M phosphate buffer solution (pH = 7.4) containing 5 mM K₃Fe(CN)₆-K₄Fe(CN)₆ (1:1).

Fig. S7 a) Cyclic voltammetry scans of a WS₂ 10K modified electrode performed between 0 and 1.5 V (vs. Ag/AgCl) in 0.5 M H₂SO₄. b) Polarization curves of WS₂ 10K modified electrodes before and after activation at different potentials in 0.5 M H₂SO₄.

Fig. S8 XPS surveys of WS₂ 10K before (C-WS₂ 10K) and after (A-WS₂ 10K) activation.

Fig. S9 High resolution O 1s core level XPS spectra of WS $_2$ 10K before (C-WS $_2$ 10K) and after (A-WS $_2$ 10K) activation.

Fig. S10 Raman spectra of WS₂ 10K before (WS₂ 10K) and after (A-WS₂ 10K) activation.

Fig. S11 Electrochemical impedance spectra of a WS₂ 10K electrode: i) before activation (WS₂ 10K); ii) after activation (A-WS₂ 10K) and iii) after activation and 2 hours HER test (A-WS₂-2h). EIS was conducted in 0.1 M KCl-0.01 M phosphate buffer solution (pH = 7.4) containing 5 mM $K_3Fe(CN)_6-K_4Fe(CN)_6$ (1:1).

Fig. S12 Cyclic voltammograms performed between 0.5 and -0.3V (vs. Ag/AgCl) with a scan rate of 100 mV s⁻¹ in 0.5 M H_2SO_4 for i) WS₂ 10K and ii) activated WS₂ 10K (A-WS₂ 10K), respectively.

Fig. S13 High resolution (a) W 4f and 5p and (b) S 2p core level XPS spectra of controlled WS₂ 10K before (C-WS₂ 10K) and after (C-WS₂-2h) 2h HER test.

Fig. S14 Electrochemical impedance spectra of i) $WS_2 10K$; ii) activated $WS_2 10K$ (A- $WS_2 10K$) and iii) activated $WS_2 10K$ subjected to 2 hours HER test (A- WS_2 -2h) in 0.5 M H₂SO₄.

Fig. S15. Cyclic voltammogram scans of (a) $WS_2 10K$, (c) $a-WS_2 10K$ and (e) $a-WS_2$ -2h at different scan rates (0.1, 0.08, 0.06, 0.04, 0.02 and 0.01 V s⁻¹) and the corresponding capacitive current density measured at 0.25 V (vs. RHE) plotted as a function of scan rate (b, d, f). The average value of the slope was determined as the double-layer capacitance (C_{dl}) of each catalyst. The calculated C_{dl} of WS₂ 10K, A-WS₂ 10K and A-WS₂-2h are 1.03, 4.46 and 0.95 mF cm⁻², respectively.

Table S1 XPS data of composition of WS_2 bulk and 500, 1K, 3K and 10K centrifugation products.

WS ₂	bulk WS ₂ 0.5K	WS ₂ 1K	WS ₂ 3K	WS ₂ 10K
-----------------	---------------------------	--------------------	--------------------	---------------------

S (%At conc)	65.5	65.2	65.2	65.4	66.0
W (%At conc)	34.5	34.1	34.8	34.6	34.0
Ratio of S to W	1.9:1	1.9 : 1	1.9 : 1	1.9 : 1	1.9 : 1

Table S2 The atomic ratios of S to W and W(VI) to W(IV) of controlled WS2 10K (C-WS2 10K),activated WS2 10K (A-WS2 10K), activated WS2 10K subjected to 0.5 and 2 hours HER test (A-WS2-0.5h and A-WS2-2h) and controlled WS2 10K subjected to 2 hours HER test (C-WS2-2h).

	C-WS ₂ 10K	A-WS ₂ 10K	A-WS ₂ -0.5h	A-WS ₂ -2h	C-WS ₂ -2h
Ratio of S to W	1.9 : 1	1.6 : 1	1.7 : 1	1.8 : 1	1.9 : 1
Ratio of W(VI) to W(IV)	0.1:1	0.4 : 1	0.3 : 1	0.2 : 1	0.1:1

Table S3 Comparison of the electrocatalytic activity of WS_2 nanosheets/nanodots (WS_2 NSDs) and activated WS_2 NSDs *versus* the WS_2 -based catalysts on GCE (two catalysts on carbon fiber paper and carbon cloth have been pointed out) reported recently for HER in 0.5 M H₂SO₄.

Cotolyste	Mass loading	Overpotential (mV)	Tafel Slope	Deference
Catalysis	(mg cm ⁻²)	ng cm ⁻²) for j=10 mA cm ⁻² (mV dec ⁻¹)		Reference
WS ₂ NSDs	0.283	337	80	This work
Activated WS ₂ NSDs	0.283	255	73	This work
WS ₂ nanoflakes	1	~358	~200	1
BuLi exfoliated WS ₂ nanosheets	0.001.0.0005	240 (1T)	55(1T)	2
(~80% 1T- WS ₂)	0.001-0.0065	440 (2H)	110(2H)	Z
BuLi exfoliated WS_2	0.0707	~690	~110	3
$WS_{2(1-x)}Se_{2x}$ nanotubes on CFP	0.21	~270	105	4
WS_2 on carbon cloth	-	225	105	5
WS ₂ nanosheets	0.0566	~380	~95	6
WS_2 nanosheets/quantum dots	0.0354	~340 (DMF)	70 (DMF)	7

		~355 (NMP)	75 (NMP)	
Aromatic-exfoliated WS_2	0.0142	~520	~70	8
WS _{3-x} Films	-	494	43.7	9
Ta -doped WS_2	0.0707	~720	~170	10

1. Choi, C. L.; Feng, J.; Li, Y.; Wu, J.; Zak, A.; Tenne, R.; Dai, H., WS₂ nanoflakes from nanotubes for electrocatalysis. *Nano Res.* **2013**, *6*, 921-928.

Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D. C.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V.
B.; Eda, G.; Chhowalla, M., Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution. *Nat. Mater.* **2013**, *12*, 850-855.

3. Eng, A. Y. S.; Ambrosi, A.; Sofer, Z.; Simek, P.; Pumera, M., Electrochemistry of Transition Metal Dichalcogenides: Strong Dependence on the Metal-to-Chalcogen Composition and Exfoliation Method. *ACS Nano* **2014**, *8*, 12185-12198.

4. Xu, K.; Wang, F.; Wang, Z.; Zhan, X.; Wang, Q.; Cheng, Z.; Safdar, M.; He, J., Component-Controllable WS_{2(1-x)}Se_{2x} Nanotubes for Efficient Hydrogen Evolution Reaction. *ACS Nano* **2014**, *8*, 8468-8476.

5. Yan, Y.; Xia, B.; Li, N.; Xu, Z.; Fisher, A.; Wang, X., Vertically oriented MoS₂ and WS₂ nanosheets directly grown on carbon cloth as efficient and stable 3-dimensional hydrogenevolving cathodes. *J. Mater. Chem. A* **2015**, *3*, 131-135.

6. Chia, X.; Ambrosi, A.; Sofer, Z.; Luxa, J.; Pumera, M., Catalytic and Charge Transfer Properties of Transition Metal Dichalcogenides Arising from Electrochemical Pretreatment. *ACS Nano* **2015**, *9*, 5164-5179.

7. Xu, S.; Li, D.; Wu, P., One-Pot, Facile, and Versatile Synthesis of Monolayer MoS₂/WS₂ Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction. *Adv. Funct. Mater.* **2015**, *25*, 1127-1136.

 Tan, S. M.; Sofer, Z.; Luxa, J.; Pumera, M., Aromatic-Exfoliated Transition Metal Dichalcogenides: Implications for Inherent Electrochemistry and Hydrogen Evolution. *ACS Catal.* 2016, 6, 4594-4607.

9. Tan, S. M.; Pumera, M., Bottom-up Electrosynthesis of Highly Active Tungsten Sulfide (WS_{3-x})

Films for Hydrogen Evolution. ACS Appl. Mater. Interfaces 2016, 8, 3948-3957.

10. Chua, X. J.; Luxa, J.; Eng, A. Y. S.; Tan, S. M.; Sofer, Z.; Pumera, M., Negative Electrocatalytic Effects of p-Doping Niobium and Tantalum on MoS₂ and WS₂ for the Hydrogen Evolution Reaction and Oxygen Reduction Reaction. *ACS Catal.* **2016**, *6*, 5724-5734.

