Phthalocyanine-based coordination polymer nanoparticle for enhanced photodynamic therapy

Ziyuan Huang a, b, Liangfeng Huang a, Yanjuan Huang a, Yuanfeng He a, Xiaoqi Sun a, Xiang Fu a, Xiaoyu Xu a, Gaofei Wei a, Dawei Chen b, Chunshun Zhao a, *

a School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China, 510006
b School of Pharmacy, Shenyang Pharmaceutical University, Liaoning, People’s Republic of China, 110016

*Corresponding author: Chunshun Zhao, Tel: +86 20 39943118; Fax: +86 20 39943118; E-mail address: zhaocs@mail.sysu.edu.cn.
Supplementary caption

Scheme S1. Synthesis route of tetra(4-carboxyphenoxy)-phthalocyaninatozinc(II) (TPZnPc).

Fig. S1. ¹H NMR spectra of 4-(4-carboxyphenoxy) phthalonitrile.
Fig. S2. ESI-MS spectra of 4-(4-carboxyphenoxy) phthalonitrile.
Fig. S3. IR spectra of 4-(4-carboxyphenoxy) phthalonitrile
Fig. S4. ¹H NMR spectra of TPZnPc.
Fig. S5. MALDI-TOF-MS spectra of TPZnPc.
Fig. S6. IR spectra of TPZnPc.

Scheme S2. Synthesis route of DCA-Lys-Chol (DLC).

Fig. S7. ¹H NMR spectra of LC.
Fig. S8. ESI-MS spectra of LC.
Fig. S9. ¹H NMR spectra of DLC.
Fig. S10. ESI-MS spectra of DLC.

Fig. S11. ¹H NMR spectra of PCPNs@DOPA and DOPA. The structural formula (inset) is DOPA molecule.

Fig. S12. Fluorescence emission spectrum of PCPNs@Lip/DLC at pH 7.4 and 6.5 in PBS.

Fig. S13. UV-vis absorption spectra changes of the ¹O₂ indicator ABDA mixed with (A) TPZnPc, (B) PCPNs@Lip and (C) PCPNs@Lip/DLC for different times under laser irradiation.

Fig. S14. The photostability of (A) TPZnPc, (B) PCPNs@Lip and (C) PCPNs@Lip/DLC.

Fig. S15. Photostability of TPZnPc, PCPNs@Lip and PCPNs@Lip/DLC in PBS.

Fig. S16. The stability of the PCPNs@Lip/DLC incubated with PBS (10% FBS). The sample solution was laser irradiated for 15 min at 4 h.

Fig. S17. UV-vis absorption spectra of PCPNs@Lip/DLC incubation with PBS at (A) pH 7.4, (B) pH 6.5 and (C) pH 5.0.

Fig. S18. Zeta potential variation of PCPNs@Lip/DLC at different pH values for 24 h.

Fig. S19. In vitro cytotoxicity of TPZnPc, PCPNs@Lip and PCPNs@Lip/DLC against MCF-7 cells without irradiation.
Scheme S1. Synthesis route of tetra(4-carboxyphenoxy)-phthalocyaninatozinc(II) (TPZnPc).
Fig. S1. 1H NMR spectra of 4-(4-carboxyphenoxy) phthalonitrile.

Fig. S2. ESI-MS spectra of 4-(4-carboxyphenoxy) phthalonitrile.
Fig. S3. IR spectra of 4-(4-carboxyphenoxy) phthalonitrile.
Fig. S4. 1H NMR spectra of TPZnPc.
Fig. S5. MALDI-TOF-MS spectra of TPZnPc.
Fig. S6. IR spectra of TPZnPc.
Scheme S2. Synthesis route of DCA-Lys-Chol (DLC).
Fig. S7. 1H NMR spectra of LC.
Fig. S8. ESI-MS spectra of LC.
Fig. S9. 1H NMR spectra of DLC.
Fig. S10. ESI-MS spectra of DLC.
Fig. S11. 1H NMR spectra of PCPNs@DOPA and DOPA. The structural formula (inset) is DOPA molecule.

Fig. S12. Fluorescence emission spectrum of PCPNs@Lip/DLC at pH 7.4 and 6.5 in PBS.
Fig. S13. UV-vis absorption spectra changes of the 1O$_2$ indicator ABDA mixed with (A) TPZnPc, (B) PCPNs@Lip and (C) PCPNs@Lip/DLC for different times under laser irradiation.

Fig. S14. The photostability of (A) TPZnPc, (B) PCPNs@Lip and (C) PCPNs@Lip/DLC.

Fig. S15. Photostability of TPZnPc, PCPNs@Lip and PCPNs@Lip/DLC in PBS.
Fig. S16. The stability of the PCPNs@Lip/DLC incubated with PBS (10% FBS). The sample solution was laser irradiated for 15 min at 4 h.

Fig. S17. UV-vis absorption spectra of PCPNs@Lip/DLC incubation with PBS at (A) pH 7.4, (B) pH 6.5 and (C) pH 5.0.

Fig. S18. Zeta potential variation of PCPNs@Lip/DLC at different pH values for 24 h.
Fig. S19. *In vitro* cytotoxicity of TPZnPc, PCPNs@Lip and PCPNs@Lip/DLC against MCF-7 cells without irradiation.