Electronic Supplementary Material

CoSe_x Nanocrystalline-Dotted CoCo Layered Double Hydroxide Nanosheets: A Synergetic Engineering for Enhanced Electrocatalytic

Water Oxidation

Yuzhu Xue,^a Zhiyu Ren,^a* Ying Xie,^a Shichao Du,^a Jun Wu,^{a, b} Huiyuan Meng,^a and

Honggang Fu^{a*}

- ^a Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China; School of Chemistry and Materials Science, Heilongjiang University, 150080 Harbin P. R. China.
- ^b College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001 Harbin P. R. China.

† Corresponding author: Prof. Z. Y. Ren and Prof. H. G. Fu,

Tel: +86-451-86604330; Fax: +86-451-86661259.

E-mail address: fuhg@vip.sina.com; fuhg@hlju.edu.cn; zyren@hlju.edu.cn.

Experimental section

According to the previous reports^[S1], NaHSe solution was prepared on the basis of the following reaction:

$$4NaBH_4 + 2Se + 7H_2O = 2NaHSe + Na_2B_4O_7 + 14H_2\uparrow$$

Briefly, selenium powder (0.25 mmol) and $NaBH_4$ (5 mmol) was mixed in deionized water (5 mL) using ultrasonication for a while.

Results and discussion

Fig. S1 The photos of the obtained CoCo LDH and various Co-Se NSs.

Fig. S2 FT-IR spectra of OAm, $[Co(OAm)_n]^{2+}$ complex, and Co-Se-2 NS.

Fig. S3 X-ray diffraction data for CoCo LDH (black) and various Co-Se NSs: Co-Se-1 (red), Co-Se-2 (green) and Co-Se-3 (blue), respectively.

Fig. S4 XPS survey spectra of CoCo LDH and Co-Se-2 NS.

Table. S1 The content of Co²⁺, Co³⁺, and Co-Se in Co-Se NSs and CoCo LDH,respectively.

Samples	Co ²⁺ (at%)	Co ³⁺ (at%)	Co-Se (at%)	Co ²⁺ /Co ³⁺ (atomic ratio)
CoCo LDH	34.07	16.27	0	2.09
Co-Se-1	27.20	14.00	5.70	1.94
Co-Se-2	30.16	16.01	6.86	1.88
Co-Se-3	25.55	15.84	10.22	1.61

Fig. S5 AFM and line profile images of Co-Se-2 NS (contact mode).

Fig. S6 The typical TEM images of CoCo LDH (a), Co-Se-1 NS (b), and Co-Se-3 NS

(c).

Fig. S7 N_2 adsorption-desorption isotherms of CoCo LDH and various Co-Se NSs.

Table. S2 Comparison of BET surface area and desorption average pore diameter ofCoCo LDH and various Co-Se NSs.

Sample name	BET Surface area (m ² ·g ⁻¹)	Pore diameter (nm)
CoCo LDH	239.4700	13.2728
Co-Se-1	173.7823	14.1968
Co-Se-2	152.5266	9.3263
Co-Se-3	112.7479	8.9415

Fig. S8 *iR*-compensated LSV (solid line) and LSV (dotted line) curves for Co-Se NSs, CoCo LDH and Ru/C-5% towards OER in 1 M KOH solution.

Table. S3 Comparison of OER performance of Co-Se-2 NS with recently report	ted
Co-based electrocatalysts in alkaline electrolyte.	

Catalysts	Substrate	η@10 mA·cm ⁻² (mV)	Tafel slope (mV/dec)	Electrolyte	Reference
Co-Se-2	GCE	290	70	1.0 M KOH	This work
CoSe amorphous films	Ti mesh	292	69	1.0 M KOH	Chem. Commun. 2015, 51, 16683.
Ni₃Se₄ Nanoassemblies	Ni foam	243	30	1.0 M KOH	Appl. Mater. Interfaces. 2017, 9, 8714
CoFe hydroxide spiral nanosheets	GCE	380	44.9	1.0 M KOH	Chem. Sci. 2015, 6, 3572.
1.0%Ag-CoSe ₂ lamellar nanobelts	GCE	320	56	0.1M KOH	Angew. Chem. Int. Ed. 2017, 56, 328.
$Au_{25}/CoSe_2$ nanosheets	GCE	410		0.1 M KOH	J. Am. Chem. Soc. 2017, 139, 1077.
Single-unit-cell thick CoSe ₂ sheets	GCE	~ 350	64	1.0 M KOH	Angew. Chem. Int. Ed. 2015, 54, 12004.
Co _{0.85} Se nanotube arrays	CFC	324	85	1.0 M KOH	Adv. Mater. 2016, 28, 77.
CoCo single-layer LDH nanosheets	GCE	353	45	1.0 M KOH	Nat. Commun. 2014, 5, 4477.
Amorphous Co phyllosilicate	GCE	367	60	1.0 M KOH	Adv. Mater. 2017, 29, 1606893.
Coral-like CoSe	GCE	295	40	1.0 M KOH	Electrochimica Acta. 2016, 194, 59

CoSe ₂ Nanocrystals	GCE	430	50	1.0 M KOH	Appl. Mater. Interfaces. 2016, 8, 5327
ZIF-Co _{0.85} Se	GCE	360	62	1.0 M KOH	Appl. Mater. Interfaces. 2016, 8, 20534
MOF derived CoSe ₂ nanoparticles	CFP	297	41	1.0 M KOH	Nano Res. 2016, 9, 2234
(Ni, Co) _{0.85} Se@NiCo-LDH	CFP	216	77	1.0 M KOH	Adv. Mater. 2016, 28, 77
Janus Co/CoP nanoparticles	GCE	340	79.5	1.0 M KOH	Adv. Energy Mater. 2017, DOI: 10.1002/aenm.201602355.
NiCo LDH nanosheets	CFP	367	40	1.0 M KOH	Nano Lett. 2015, 15, 1421.
CoS doped Co(OH) ₂ @aMoS _{2+x} /NF networked nanoplates	Ni foam	380	68	1.0 M KOH	Adv. Funct. Mater. 2016, 26, 7386.
Co ₃ O ₄ /rGO	GP	346	47	1.0 M KOH	Nano Energy 2017, 33, 445.
RGO@CoNiO _x	GCE	280	42	1.0 M KOH	Adv. Funct. Mater. 2017, 27, 1606325.
NiCo2O4 hollow nanowall arrays	СС	340	72	1.0 M KOH	Adv. Energy Mater. 2017, DOI: 10.1002/aenm.201602391
Co_3O_4 hollow microtube arrays	GCE	310	84	1.0 M KOH	Angew. Chem. Int. Ed. 2017, 56, 1324.
FeCo oxide nanosheets	GCE	308	36.8	0.1 M KOH	Adv. Mater. 2017, 29, 1606793.
NiCoP/C nanoboxes	GCE	330	96	1.0 M KOH	Angew. Chem. Int. Ed. 2017, 56, 3897.
CoNi(20:1) phosphide nanosheets	GCE	273	45	1.0 M KOH	Energy Environ. Sci. 2017, 10, 893.
Amorphous CoFe hydroxide nanosheet	Graphite	280	28	1.0 М КОН	Adv. Funct. Mater. 2017, 27, 1603904.
Amorphous Co ₂ B	GCE	380	45	1.0 M KOH	Adv. Energy Mater. 2016, 6, 1502313.
CoO _x nanoparticles/B,N-decorated graphene	GCE	295	57	0.1M KOH	Angew. Chem. Int. Ed. 2017, 10.1002/anie.201702430
Co ₃ O₄ nanocrystals	CFP	320	101	1.0 M KOH	Chem. Commun. 2015, 51, 8066.
CP/Carbon tube/Co-S sheet arrays	СР	306	72	1.0 M KOH	ACS Nano 2016, 10, 2342.
CoNi(OH) _x nanotubes	Cu foil	280	77	1.0 M KOH	Adv. Energy Mater. 2015, 6, 1501661.

Abbreviations: GCE = Glassy carbon electrode; LDH = Layered double hydroxide; CFP = Carbon fiber paper; CFC = Carbon fiber cloth; MOF = Metal organic framework; ZIF = Zeolitic Imidazolate Framework; CC = Carbon cloth; CP = Carbon paper; NF = Nickel foam.

Fig. S9 (a-c) CVs for CoCo LDH and Co-Se NSs at various scan rate (10, 20, 40, 60 80, 100, and 120 mV·s⁻¹).

Table. S4 Parameters obtained by fitting the impedance spectra of CoCo LDH, Co-Se-1, Co-Se-2 and Co-Se-3 NSs using the equivalent circuit in Fig. 4(d)

Sample name	$R_{ct}\left(\Omega ight)$	$R_{s}\left(\Omega ight)$
CoCo LDH	5.810	578.4
Co-Se-1	4.867	338.3
Co-Se-2	4.305	72.66
Co-Se-3	5.000	267.1

TOF measurements

The active surface redox sites of Co-Se NS and CoCo LDH were determined by integrating the anodic oxidation peak of Co^{II} to Co^{III} without the capacitive current^[S2]. To fully oxidize the surface area, 30 scans of CV from 0.86 to 1.46 V (*vs.* RHE) with a scan rate of 20 mVs⁻¹ in 1.0 M NaOH were carried out, until a steady CV curve obtained (Fig. S11). For the one electron reaction of Co^{II}/Co^{III}, the number of active atoms is equal to the integrated charge of the peak Q_S divided by the charge of an electron Q_e (1.6×10⁻¹⁹ C), $N_S = Q_S / Q_e$.

Fig. S10 Electrochemical CVs on CoCo LDH and Co-Se-2 NS for determining redox surface sites of Co^{II}/Co^{III}.

Notes and references

[S1] C. Xia, Q. Jiang, C. Zhao, M. N. Hedhili and H. N. Alshareef, Adv. Mater., 2016, 28, 77-85. [S2] X. M. Zhou, X. T. Shen, Z. M. Xia, Z. Y. Zhang, J. Li, Y. Y. Ma and Y. Q. Qu, ACS Appl. Mater. Interfaces, 2015, 7, 20322-20331.