Electronic Supplementary Information

Challenging metastatic breast cancer with the natural defensin PvD_1

Tiago N. Figueira1§, Filipa D. Oliveira1§, Inês Almeida1, Érica O. Mello2, Valdirene M. Gomes2, Miguel A. R. B. Castanho1*, Diana Gaspar1*

1Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon 1649-028, Portugal

2Laboratório de Fisiologia e Bioquímica de Microrganismos do Centro de Biociências e Biotecnologia da Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil

§ the authors contributed equally for this work.

*Corresponding authors:
Diana Gaspar
E-mail address: dianagaspar@medicina.ulisboa.pt
Miguel A. R. B. Castanho
E-mail address: macastanho@medicina.ulisboa.pt
Tel: +351 217985136
Fax: +351 217999477
Figure S1. MDA-MB-231 (A, C) and MCF 10A (B, D) cell membrane roughness (R_{ms})
determined before and after P_{vD1} (A, B) and HNP-1 (C, D) peptide contact. R_{ms} was
evaluated using AFM height images over the nuclear and cytoplasm areas and finally over
the entire cell and normalized to control. Number of analysed cells for determination of cell
membrane R_{ms} in presence of P_{vD1} was 12 for each control and 10 for each P_{vD1}
concentration tested on MDA-MB-231 cell line while for MFC 10A cell line was: 0.01 µM-
10; 0.8 µM- 10 and 50 µM- 7. Cell membrane R_{ms} determination in presence of HNP-1
was based on 12 cells for both cell lines. All experiments were repeated in different days
using independently grown cell cultures.
Figure S2. HBMEC cell height (left graph) and cell membrane roughness (R_{ms}, right graph) was determined before and after peptide contact. R_{ms} was evaluated using AFM height images over the nuclear and cytoplasm areas and over the entire cell. Cell height and R_{ms} were normalized to control. Number of analysed cells for determination of HBMEC cell height in presence of PvD_1 was: 0 µM - 13; 0.1 µM- 11; 0.8 µM- 12; 2.5 µM- 11 and 50 µM- 12. Cell membrane R_{ms} was based on 10 cells. All experiments were repeated in different days using independently grown cell cultures. A one-way ANOVA followed by a Tukey post-test was employed.
Figure S3. Variations in the cell membrane dipole potential of MCF 10A cells (A, B) and MDA-MB-231 cells (C, D) in the presence of \(\text{PvD}_1 \) were followed by di-8-ANEPPS fluorescence excitation spectra shifts. Differential spectra (A, C) were obtained by subtracting the normalized excitation spectra (to the integrated spectrum areas) of the suspended labeled cells in the presence of increasing \(\text{PvD}_1 \) concentration from the spectra obtained in the absence of \(\text{PvD}_1 \). Normalized excitation ratios (\(R_{\text{norm}} \)) were used to quantify the magnitude of dipole potential perturbation (B, D). All experiments were repeated in different days using independently grown cell cultures. Statistical significance was evaluated with an unpaired two-tailed \(t \)-test. *0.01 < \(p \)-value < 0.05; **** \(p \)-value < 0.0001.
Figure S4. Representative Force-distance (F-d) retraction curves obtained during AFM-SCFS experiments in the absence and presence of \(P\nu D_1 \) peptide. (A) MDA-MB-231 – MDA-MB-231; (B) MDA-MB-231 – HBMEC and (C) HBMEC – MDA-MB-231 interactions, respectively.
Figure S5. Adhesion strength (F_D, A) and work (W_D, B) in the absence and presence of PvD_1 are presented for MDA-MB-231 cells –HBMEC-cantilever bound cells. Tethers extraction forces in the absence and presence of peptide are presented for MDA-MB-231 cells –MDA-MB-231-cantilever bound cells (C), MDA-MB-231 cells – HBMEC-cantilever bound cells (D) and HBMEC - MDA-MB-231-cantilever bound cells (E). 16 to 28 cells were analyzed and the number of force-distance curves obtained for each peptide concentration tested was: (A, B, D) 0 µM - 67; 0.01 µM - 69; (C) 0 µM - 65; 0.01 µM - 63; 0.8 µM - 47 and 50 µM - 54; (E) 0 µM - 97; 0.1 µM - 123; 0.8 µM - 63 and 2.5 µM - 59. Statistical significance was evaluated with a Mann-Whitney test. *0.01 < p-value < 0.05; **0.001 < p-value < 0.01; ***0.0001 < p-value < 0.001; **** p-value < 0.0001.